Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Developmental Biolog...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Developmental Biology
Article . 1996 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Developmental Biology
Article
License: Elsevier Non-Commercial
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Developmental Biology
Article . 1996
License: Elsevier Non-Commercial
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Eph Family Receptors and Their Ligands Distribute in Opposing Gradients in the Developing Mouse Retina

Authors: Riva C. Marcus; Nicholas W. Gale; Carol A. Mason; Mary E. Morrison; George D. Yancopoulos;

Eph Family Receptors and Their Ligands Distribute in Opposing Gradients in the Developing Mouse Retina

Abstract

The Eph family of receptor tyrosine kinases and their ligands can be divided into two specificity subclasses: the Eck-related receptors and their GPI-anchored ligands, and the Elk-related receptors and their transmembrane ligands. Previous reports demonstrated that Eck- and Elk-related receptors in the retina distribute in high temporal-low nasal and high ventral-low dorsal gradients, respectively. While others have focused on complementary ligand gradients in the retinal axon target, the tectum, we report that ligands from each subclass also distribute in gradients opposing those of their corresponding receptors within the retina itself. Moreover, ligand gradients in the retina precede ganglion cell genesis. These results support an intraretinal role for Eph family members in addition to their previously proposed role in the development of retinotectal topography. The distinct distributions of Eph family members suggest that each subclass specifies positional information along independent retinal axes.

Related Organizations
Keywords

Retinal Ganglion Cells, Glycosylphosphatidylinositols, Cell Membrane, Ephrin-A2, Gene Expression Regulation, Developmental, Proteins, Receptor Protein-Tyrosine Kinases, Cell Biology, Ligands, Retina, Mice, Inbred C57BL, Embryonic and Fetal Development, Mice, Pregnancy, Protein Biosynthesis, Animals, Female, DNA Probes, Molecular Biology, Developmental Biology

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    130
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
130
Top 10%
Top 10%
Top 1%
hybrid