Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Cellular Signallingarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Cellular Signalling
Article . 2019 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

BAFF inhibits autophagy promoting cell proliferation and survival by activating Ca2+-CaMKII-dependent Akt/mTOR signaling pathway in normal and neoplastic B-lymphoid cells

Authors: Xiaoqing Dong; Jiamin Qin; Jing Ma; Qingyu Zeng; Hai Zhang; Ruijie Zhang; Chunxiao Liu; +4 Authors

BAFF inhibits autophagy promoting cell proliferation and survival by activating Ca2+-CaMKII-dependent Akt/mTOR signaling pathway in normal and neoplastic B-lymphoid cells

Abstract

B cell activating factor from the TNF family (BAFF) is implicated in not only the physiology of normal B cells, but also the pathophysiology of aggressive B cells related to malignant and autoimmune diseases. Autophagy plays a crucial role in balancing the beneficial and detrimental effects of immunity and inflammation. However, little is known about whether and how excessive BAFF mediates autophagy contributing to B-cell proliferation and survival. Here, we show that excessive human soluble BAFF (hsBAFF) inhibited autophagy with a concomitant reduction of LC3-II in normal and B-lymphoid (Raji) cells. Knockdown of LC3 not only potentiated hsBAFF inhibition of autophagy, but also attenuated hsBAFF activation of Akt/mTOR pathway, thereby diminishing hsBAFF-induced B-cell proliferation/viability. Further, we found that hsBAFF inhibition of autophagy was Akt/mTOR-dependent. This is supported by the findings that hsBAFF increased mTORC1-mediated phosphorylation of ULK1 (Ser757); Akt inhibitor X, mTORC1 inhibitor rapamycin, mTORC1/2 inhibitor PP242, expression of dominant negative Akt, or knockdown of mTOR attenuated hsBAFF-induced phosphorylation of ULK1, decrease of LC3-II level, and increase of cell proliferation/viability. Chelating intracellular free Ca2+ ([Ca2+]i) with BAPTA/AM or preventing [Ca2+]i elevation using EGTA or 2-APB profoundly blocked hsBAFF-induced activation of Akt/mTOR, phosphorylation of ULK1 and decrease of LC3-II, as well as increase of cell proliferation/viability. Similar effects were observed in the cells where CaMKII was inhibited by KN93 or knocked down by CaMKII shRNA. Collectively, these results indicate that hsBAFF inhibits autophagy promoting cell proliferation and survival through activating Ca2+-CaMKII-dependent Akt/mTOR signaling pathway in normal and neoplastic B-lymphoid cells. Our findings suggest that manipulation of intracellular Ca2+ level or CaMKII, Akt, or mTOR activity to promote autophagy may be exploited for prevention of excessive BAFF-induced aggressive B lymphocyte disorders and autoimmune diseases.

Related Organizations
Keywords

B-Lymphocytes, Lymphoma, B-Cell, Cell Survival, TOR Serine-Threonine Kinases, Cell Line, Cell Line, Tumor, B-Cell Activating Factor, Autophagy, Humans, Calcium, Calcium-Calmodulin-Dependent Protein Kinase Type 2, Proto-Oncogene Proteins c-akt, Cell Proliferation, Signal Transduction

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    35
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
35
Top 10%
Top 10%
Top 10%
bronze