Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Biologica...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article . 2008 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Biological Chemistry
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

S100A1 Binds to the Calmodulin-binding Site of Ryanodine Receptor and Modulates Skeletal Muscle Excitation-Contraction Coupling

Authors: Rotimi O. Olojo; Kristen M. Varney; Yewei Liu; Erick O. Hernández-Ochoa; Martin F. Schneider; Danna B. Zimmer; Benjamin L. Prosser; +2 Authors

S100A1 Binds to the Calmodulin-binding Site of Ryanodine Receptor and Modulates Skeletal Muscle Excitation-Contraction Coupling

Abstract

S100A1, a 21-kDa dimeric Ca2+-binding protein, is an enhancer of cardiac Ca2+ release and contractility and a potential therapeutic agent for the treatment of cardiomyopathy. The role of S100A1 in skeletal muscle has been less well defined. Additionally, the precise molecular mechanism underlying S100A1 modulation of sarcoplasmic reticulum Ca2+ release in striated muscle has not been fully elucidated. Here, utilizing a genetic approach to knock out S100A1, we demonstrate a direct physiological role of S100A1 in excitation-contraction coupling in skeletal muscle. We show that the absence of S100A1 leads to decreased global myoplasmic Ca2+ transients following electrical excitation. Using high speed confocal microscopy, we demonstrate with high temporal resolution depressed activation of sarcoplasmic reticulum Ca2+ release in S100A1-/- muscle fibers. Through competition assays with sarcoplasmic reticulum vesicles and through tryptophan fluorescence experiments, we also identify a novel S100A1-binding site on the cytoplasmic face of the intact ryanodine receptor that is conserved throughout striated muscle and corresponds to a previously identified calmodulin-binding site. Using a 12-mer peptide of this putative binding domain, we demonstrate low micromolar binding affinity to S100A1. NMR spectroscopy reveals this peptide binds within the Ca2+-dependent hydrophobic pocket of S100A1. Taken together, these data suggest that S100A1 plays a significant role in skeletal muscle excitation-contraction coupling, primarily through specific interactions with a conserved binding domain of the ryanodine receptor. This warrants further investigation into the use of S100A1 as a therapeutic target for the treatment of both cardiac and skeletal myopathies.

Keywords

Mice, Knockout, Binding Sites, Myocardium, Muscle Fibers, Skeletal, S100 Proteins, Ryanodine Receptor Calcium Release Channel, Membrane Potentials, Mice, Sarcoplasmic Reticulum, Calmodulin, Muscular Diseases, Animals, Cardiomyopathies, Muscle, Skeletal, Peptides, Nuclear Magnetic Resonance, Biomolecular, Muscle Contraction

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    93
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
93
Top 10%
Top 10%
Top 10%
gold