Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Oncogenearrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Oncogene
Article
Data sources: UnpayWall
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Oncogene
Article . 2006 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
Oncogene
Article . 2006
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

RUNX1 associates with histone deacetylases and SUV39H1 to repress transcription

Authors: E Reed-Inderbitzin; Scott W. Hiebert; B Lutterbach; B Lutterbach; Isabel Moreno-Miralles; Michael L. Cleary; Brenda J. Irvin; +7 Authors

RUNX1 associates with histone deacetylases and SUV39H1 to repress transcription

Abstract

RUNX1 (AML1) is a gene that is frequently disrupted by chromosomal translocations in acute leukemia. Like its Drosophila homolog Runt, RUNX1 both activates and represses transcription. Both Runt and RUNX1 are required for gene silencing during development and a central domain of RUNX1, termed repression domain 2 (RD2), was defined as being required for transcriptional repression and for the silencing of CD4 during T-cell maturation in thymic organ cultures. Although transcriptional co-repressors are known to contact other repression domains in RUNX1, the factors that bind to RD2 had not been defined. Therefore, we tested whether RD2 contacts histone-modifying enzymes that may mediate both repression and gene silencing. We found that RD2 contacts SUV39H1, a histone methyltransferase, via two motifs and that endogenous Suv39h1 associates with a Runx1-regulated repression element in murine erythroleukemia cells. In addition, one of these SUV39H1-binding motifs is also sufficient for binding to histone deacetylases 1 and 3, and both of these domains are required for full RUNX1-mediated transcriptional repression. The association between RUNX1, histone deacetylases and SUV39H1 provides a molecular mechanism for repression and possibly gene silencing mediated by RUNX1.

Keywords

Repressor Proteins, Jurkat Cells, COS Cells, Chlorocebus aethiops, Core Binding Factor Alpha 2 Subunit, Animals, Humans, Methyltransferases, Transfection, Histone Deacetylases

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    68
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
68
Top 10%
Top 10%
Top 10%
bronze