
doi: 10.1093/hmg/10.4.329
pmid: 11157796
Fragile X syndrome is a common form of inherited mental retardation. Most fragile X patients exhibit mutations in the fragile X mental retardation gene 1 (FMR1) that lead to transcriptional silencing and hence to the absence of the fragile X mental retardation protein (FMRP). Since FMRP is an RNA-binding protein which associates with polyribosomes, it had been proposed to function as a regulator of gene expression at the post-transcriptional level. In the present study, we show that FMRP strongly inhibits translation of various mRNAs at nanomolar concentrations in both rabbit reticulocyte lysate and microinjected Xenopus laevis oocytes. This effect is specific for FMRP, since other proteins with similar RNA-binding domains, including the autosomal homologues of FMRP, FXR1 and FXR2, failed to suppress translation in the same concentration range. Strikingly, a disease-causing Ile-->Asn substitution at amino acid position 304 (I304N) renders FMRP incapable of interfering with translation in both test systems. Initial studies addressing the underlying mechanism of inhibition suggest that FMRP inhibits the assembly of 80S ribosomes on the target mRNAs. The failure of FMRP I304N to suppress translation is not due to its reduced affinity for mRNA or its interacting proteins FXR1 and FXR2. Instead, the I304N point mutation severely impairs homo-oligomerization of FMRP. Our data support the notion that inhibition of translation may be a function of FMRP in vivo. We further suggest that the failure of FMRP to oligomerize, caused by the I304N mutation, may contribute to the pathophysiological events leading to fragile X syndrome.
Ribosomal Proteins, Microinjections, RNA-Binding Proteins, Nerve Tissue Proteins, Xenopus Proteins, Repressor Proteins, Fragile X Mental Retardation Protein, Xenopus laevis, Fragile X Syndrome, Intellectual Disability, Protein Biosynthesis, Mutagenesis, Site-Directed, Oocytes, Animals, Humans, RNA, Messenger, Rabbits, Asparagine, Isoleucine, Peptide Chain Initiation, Translational
Ribosomal Proteins, Microinjections, RNA-Binding Proteins, Nerve Tissue Proteins, Xenopus Proteins, Repressor Proteins, Fragile X Mental Retardation Protein, Xenopus laevis, Fragile X Syndrome, Intellectual Disability, Protein Biosynthesis, Mutagenesis, Site-Directed, Oocytes, Animals, Humans, RNA, Messenger, Rabbits, Asparagine, Isoleucine, Peptide Chain Initiation, Translational
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 520 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
