Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Evidence that fragile X mental retardation protein is a negative regulator of translation

Authors: Utz Fischer; Antje Ostareck-Lederer; Dirk H. Ostareck; Eva-Maria Keidel; Bernhard Laggerbauer;

Evidence that fragile X mental retardation protein is a negative regulator of translation

Abstract

Fragile X syndrome is a common form of inherited mental retardation. Most fragile X patients exhibit mutations in the fragile X mental retardation gene 1 (FMR1) that lead to transcriptional silencing and hence to the absence of the fragile X mental retardation protein (FMRP). Since FMRP is an RNA-binding protein which associates with polyribosomes, it had been proposed to function as a regulator of gene expression at the post-transcriptional level. In the present study, we show that FMRP strongly inhibits translation of various mRNAs at nanomolar concentrations in both rabbit reticulocyte lysate and microinjected Xenopus laevis oocytes. This effect is specific for FMRP, since other proteins with similar RNA-binding domains, including the autosomal homologues of FMRP, FXR1 and FXR2, failed to suppress translation in the same concentration range. Strikingly, a disease-causing Ile-->Asn substitution at amino acid position 304 (I304N) renders FMRP incapable of interfering with translation in both test systems. Initial studies addressing the underlying mechanism of inhibition suggest that FMRP inhibits the assembly of 80S ribosomes on the target mRNAs. The failure of FMRP I304N to suppress translation is not due to its reduced affinity for mRNA or its interacting proteins FXR1 and FXR2. Instead, the I304N point mutation severely impairs homo-oligomerization of FMRP. Our data support the notion that inhibition of translation may be a function of FMRP in vivo. We further suggest that the failure of FMRP to oligomerize, caused by the I304N mutation, may contribute to the pathophysiological events leading to fragile X syndrome.

Keywords

Ribosomal Proteins, Microinjections, RNA-Binding Proteins, Nerve Tissue Proteins, Xenopus Proteins, Repressor Proteins, Fragile X Mental Retardation Protein, Xenopus laevis, Fragile X Syndrome, Intellectual Disability, Protein Biosynthesis, Mutagenesis, Site-Directed, Oocytes, Animals, Humans, RNA, Messenger, Rabbits, Asparagine, Isoleucine, Peptide Chain Initiation, Translational

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    520
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
520
Top 1%
Top 1%
Top 1%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!