Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://doi.org/10.5...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.5194/tc-201...
Preprint . 2020 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://tc.copernicus.org/arti...
Preprint
License: CC BY
Data sources: UnpayWall
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Methane Pathways in Winter Ice of Thermokarst Lakes, Lagoons and Coastal Waters in North Siberia

Authors: Ines Spangenberg; Pier Paul Overduin; Ellen Damm; Ingeborg Bussmann; Hanno Meyer; Susanne Liebner; Michael Angelopoulos; +3 Authors

Methane Pathways in Winter Ice of Thermokarst Lakes, Lagoons and Coastal Waters in North Siberia

Abstract

Abstract. The thermokarst lakes of permafrost regions play a major role in the global carbon cycle. These lakes are sources of methane to the atmosphere but the methane flux is restricted by an ice cover for most of the year. We provide insights into the methane pathways in the winter ice cover on three different water bodies in a continuous permafrost region in Siberia. The first is a bay underlain by submarine permafrost (Tiksi Bay, TB), the second a shallow thermokarst lagoon (Polar Fox, PF) and the third a land-locked, freshwater thermokarst lake (Goltsovoye Lake, GL). In total, 11 ice cores were analyzed as records of the freezing process and methane pathways during the winter season. In TB, the hydrochemical parameters indicate an open system freezing. In contrast, PF was classified as a semi-closed system, where ice growth eventually cuts off exchange between the lagoon and the ocean. The GL is a closed system without connections to other water bodies. Ice on all water bodies was mostly methane-supersaturated with respect to the atmospheric equilibrium concentration, except of three cores from the lake. Generally, the TB ice had low methane concentrations (3.48–8.44 nM) compared to maximum concentrations of the PF ice (2.59–539 nM) and widely varying concentrations in the GL ice (0.02–14817 nM). Stable delta13CCH4 isotope signatures indicate that methane above the ice-water interface was oxidized to concentrations close to or below the calculated atmospheric equilibrium concentration in the ice of PF. We conclude that methane oxidation in ice may decrease methane concentrations during winter. Therefore, understanding seasonal effects to methane pathways in Arctic saline influenced or freshwater systems is critical to anticipate permafrost carbon feedbacks in course of global warming.

Subjects by Vocabulary

Microsoft Academic Graph classification: geography geography.geographical_feature_category Global warming Permafrost Methane Thermokarst Carbon cycle chemistry.chemical_compound Oceanography chemistry Ice core Arctic Anaerobic oxidation of methane Environmental science

91 references, page 1 of 10

Adams, W. and Lasenby, D.: The roles of snow, lake ice and lake water in the distribution of major ions in the ice cover of a lake, Ann. Glaciol., 7, 202-207, https://doi.org/10.3189/S0260305500006170, 1985.

Anderson, D. L.: Growth rate of sea ice, J. Glaciol., 3, 1170-1172, https://doi.org/10.3189/S0022143000017676, 1961.

Angelopoulos, M., Westermann, S., Overduin, P., Faguet, A., Olenchenko, V., Grosse, G., and Grigoriev, M. N.: Heat and salt flow in subsea permafrost modeled with CryoGRID2, J. Geophys. Res.-Earth, 124, 920-937, https://doi.org/10.1029/2018JF004823, 2019. [OpenAIRE]

Angelopoulos, M., Overduin, P. P., Westermann, S., Tronicke, J., Strauss, J., Schirrmeister, L., Biskaborn, B. K., Liebner, S., Maksimov, G., Grigoriev, M. N., and Grosse, G: Thermokarst lake to lagoon transitions in eastern Siberia: Do submerged taliks refreeze?, J. Geophys. Res.-Earth, 125, e2019JF005424, https://doi.org/10.1029/2019JF005424, 2020. [OpenAIRE]

Arp, C. D., Jones, B. M., Grosse, G., Bondurant, A. C., Romanovsky, V. E., Hinkel, K. M., and Parsekian, A. D.: Threshold sensitivity of shallow Arctic lakes and sublake permafrost to changing winter climate, Geophys. Res. Lett., 43, 6358-6365, https://doi.org/10.1002/2016GL068506, 2016.

Bartsch, A., Pointner, G., Leibman, M. O., Dvornikov, Y. A., Khomutov, A. V., and Trofaier, A. M.: Circumpolar mapping of ground-fast lake ice, Front. Earth Sci., 5, 12, https://doi.org/10.3389/feart.2017.00012, 2017.

Bastviken, D., Ejlertsson, J., and Tranvik, L.: Measurement of methane oxidation in lakes: a comparison of methods, Environ. Sci. Technol., 36, 3354-3361, https://doi.org/10.1021/es010311p, 2002. [OpenAIRE]

Bastviken, D., Cole, J., Pace, M., and Tranvik, L.: Methane emissions from lakes: Dependence of lake characteristics, two regional assessments, and a global estimate, Global Biogeochem. Cy., 18, GB4009, https://doi.org/10.1029/2004GB002238, 2004.

Bastviken, D., Cole, J. J., Pace, M. L., and Van de Bogert, M. C.: Fates of methane from different lake habitats: Connecting wholelake budgets and CH4 emissions, J. Geophys. Res.-Biogeo., 113, G02024, https://doi.org/10.1029/2007JG000608, 2008.

Biskaborn, B. K., Herzschuh, U., Bolshiyanov, D., Savelieva, L., and Diekmann, B.: Environmental variability in northeastern Siberia during the last 13 300 years inferred from lake diatoms and sediment-geochemical parameters, Palaeogeogr. Palaeocl., 329, 22-36, https://doi.org/10.1016/j.palaeo.2012.02.003, 2012.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
  • citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    Powered byBIP!BIP!
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
hybrid