Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Face Synthesis and Recognition Using Disentangled Representation-Learning Wasserstein GAN

Gee-Sern Jison Hsu; Chia-Hao Tang; Moi Hoon Yap;

Face Synthesis and Recognition Using Disentangled Representation-Learning Wasserstein GAN

Abstract

We propose the Disentangled Representation-learning Wasserstein GAN (DR-WGAN) trained on augmented data for face recognition and face synthesis across pose. We improve the state-of-the-art DR-GAN with the Wasserstein loss considered in the discriminator so that the generative and adversarial framework can be better trained. The improved training leads to better face disentanglement and synthesis. We also highlight the influences of imbalanced training data on the disentangled facial representation learning, and point out the difficulty of generating faces of extreme poses. We explore the recently proposed nonlinear 3D Morphable Model (3DMM) to augment the training data, and verify the contributions made by the learning on augmented data. Additionally, we also compare different data normalization schemes and reveal the benefit of using the group normalization. The proposed framework is verified through the experiments on benchmark databases, and compared with contemporary approaches for performance evaluation.

Subjects by Vocabulary

Microsoft Academic Graph classification: Normalization (statistics) Feature learning Benchmark (computing) Artificial intelligence business.industry business Computer science Face (geometry) Feature extraction Training set Machine learning computer.software_genre computer Facial recognition system

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
  • citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    Powered byBIP!BIP!
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Metrics badge
moresidebar

Do the share buttons not appear? Please make sure, any blocking addon is disabled, and then reload the page.