
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
Generating Diverse Test Suites for Gson Through Adaptive Fitness Function Selection
Generating Diverse Test Suites for Gson Through Adaptive Fitness Function Selection
Many fitness functions—such as those targeting test suite diversity—do not yield sufficient feedback to drive test generation. We propose that diversity can instead be improved through adaptive fitness function selection (AFFS), an approach that varies the fitness functions used throughout the generation process in order to strategically increase diversity. We have evaluated our AFFS framework, EvoSuiteFIT, on a set of 18 real faults from Gson, a JSON (de)serialization library. Ultimately, we find that AFFS creates test suites that are more diverse than those created using static fitness functions. We also observe that increased diversity may lead to small improvements in the likelihood of fault detection.
- University of South Carolina System United States
- University of South Carolina Lancaster United States
Microsoft Academic Graph classification: Computer science Set (abstract data type) Test (assessment) Fitness function Selection (genetic algorithm) Reinforcement learning Artificial intelligence business.industry business Fault detection and isolation Machine learning computer.software_genre computer Test suite Serialization
Microsoft Academic Graph classification: Computer science Set (abstract data type) Test (assessment) Fitness function Selection (genetic algorithm) Reinforcement learning Artificial intelligence business.industry business Fault detection and isolation Machine learning computer.software_genre computer Test suite Serialization
3 Research products, page 1 of 1
- 2021IsAmongTopNSimilarDocuments
- 2020IsAmongTopNSimilarDocuments
- 2020IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).1 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).1 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average Powered byBIP!

- University of South Carolina System United States
- University of South Carolina Lancaster United States
Many fitness functions—such as those targeting test suite diversity—do not yield sufficient feedback to drive test generation. We propose that diversity can instead be improved through adaptive fitness function selection (AFFS), an approach that varies the fitness functions used throughout the generation process in order to strategically increase diversity. We have evaluated our AFFS framework, EvoSuiteFIT, on a set of 18 real faults from Gson, a JSON (de)serialization library. Ultimately, we find that AFFS creates test suites that are more diverse than those created using static fitness functions. We also observe that increased diversity may lead to small improvements in the likelihood of fault detection.