Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Repositório Instituc...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Impact of ion irradiation-induced interface intermixing on the magnetic and electrical properties of magnetic tunnel junctions

Authors: Teixeira, B. M. S.; Timopheev, A. A.; Caçoilo, N.; Cuchet, L.; Mondaud, J.; Childress, J. R.; Magalhães, S.; +2 Authors

Impact of ion irradiation-induced interface intermixing on the magnetic and electrical properties of magnetic tunnel junctions

Abstract

The impact of 400 keV Ar+ irradiation on the magnetic and electrical properties of in-plane magnetized magnetic tunnel junction (MTJ) stacks was investigated by ferromagnetic resonance, vibrating sample magnetometry and current-in-plane tunneling techniques. The ion fluences ranged from 10^12 cm−2 to 5 × 10^15 cm−2. Below 10^14 cm−2, the anisotropy of the Ta-capped FeCoB free layer was weakly modulated, following a decrease in the saturation magnetization. The tunnel magnetoresistance (TMR), along with the exchange-bias and the interlayer exchange coupling providing a stable magnetic configuration to the reference layer, decreased continuously. Above 10^14 cm−2, a strong decrease in the saturation magnetization was accompanied by a loss of the magnetic coupling and of the TMR. We show there is an ion-fluence window where the modulation of magnetic anisotropy can occur while preserving a large TMR and stable magnetic configuration of the MTJ, and demonstrate that the layers surrounding the free layer play a decisive role in determining the trend of the magnetic anisotropy modulation resulting from the irradiation. Our results provide guidance for the tailoring of MTJ parameters via ion irradiation, which we propose as a potentially suitable technique for setting the magnetic easy-cone state in MTJ for attaining field-free, fast, and non-stochastic magnetization switching.

published

Related Organizations
Keywords

Ion irradiation, Magnetization damping, Tunnel magnetoresistance, Magnetic tunnel junction, Magnetic anisotropy, Ferromagnetic resonance, Magnetic coupling

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green