publication . Conference object . Preprint . 2017

A Disentangled Recognition and Nonlinear Dynamics Model for Unsupervised Learning

Marco Fraccaro; Simon Due Kamronn; Ulrich Paquet; Ole Winther;
Open Access
  • Published: 16 Oct 2017
Comment: NIPS 2017
free text keywords: Statistics - Machine Learning, Computer Science - Learning
34 references, page 1 of 3

[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng. TensorFlow: Large-scale machine learning on heterogeneous systems, 2015. Software available from

[2] E. Archer, I. M. Park, L. Buesing, J. Cunningham, and L. Paninski. Black box variational inference for state space models. arXiv:1511.07367, 2015.

[3] P. W. Battaglia, R. Pascanu, M. Lai, D. J. Rezende, and K. Kavukcuoglu. Interaction networks for learning about objects, relations and physics. In NIPS, 2016. [OpenAIRE]

[4] M. B. Chang, T. Ullman, A. Torralba, and J. B. Tenenbaum. A compositional object-based approach to learning physical dynamics. In ICLR, 2017.

[5] S. Chiappa, S. Racanière, D. Wierstra, and S. Mohamed. Recurrent environment simulators. In ICLR, 2017. [OpenAIRE]

[6] J. Chung, K. Kastner, L. Dinh, K. Goel, A. C. Courville, and Y. Bengio. A recurrent latent variable model for sequential data. In NIPS, 2015.

[7] C. Finn, I. J. Goodfellow, and S. Levine. Unsupervised learning for physical interaction through video prediction. In NIPS, 2016.

[8] M. Fraccaro, S. K. Sønderby, U. Paquet, and O. Winther. Sequential neural models with stochastic layers. In NIPS, 2016. [OpenAIRE]

[9] K. Fragkiadaki, P. Agrawal, S. Levine, and J. Malik. Learning visual predictive models of physics for playing billiards. In ICLR, 2016.

[10] Y. Gao, E. W. Archer, L. Paninski, and J. P. Cunningham. Linear dynamical neural population models through nonlinear embeddings. In NIPS, 2016.

[11] T. Haarnoja, A. Ajay, S. Levine, and P. Abbeel. Backprop KF: learning discriminative deterministic state estimators. In NIPS, 2016. [OpenAIRE]

[12] I. Higgins, L. Matthey, A. Pal, C. Burgess, X. Glorot, M. Botvinick, S. Mohamed, and A. Lerchner. beta-vae: Learning basic visual concepts with a constrained variational framework. 2017.

[13] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural Computation, 9(8):1735-1780, Nov. 1997.

[14] E. Jang, S. Gu, and B. Poole. Categorical reparameterization with gumbel-softmax. arXiv preprint arXiv:1611.01144, 2016.

[15] M. J. Johnson, D. Duvenaud, A. B. Wiltschko, S. R. Datta, and R. P. Adams. Composing graphical models with neural networks for structured representations and fast inference. In NIPS, 2016. [OpenAIRE]

34 references, page 1 of 3
Any information missing or wrong?Report an Issue