publication . Article . Preprint . 2014

An Equivalent Gauge and the Equivalence Theorem

Andrea Wulzer;
Open Access
  • Published: 27 May 2014 Journal: Nuclear Physics B, volume 885, pages 97-126 (issn: 0550-3213, Copyright policy)
  • Publisher: Elsevier BV
  • Country: Italy
Abstract
I describe a novel covariant formulation of massive gauge theories in which the longitudinal polarization vectors do not grow with the energy. Therefore in the present formalism, differently from the ordinary one, the energy and coupling power-counting is completely transparent at the level of individual Feynman diagrams, with obvious advantages both at the conceptual and practical level. Since power-counting is transparent, the high-energy limit of the amplitudes involving longitudinal particles is immediately taken, and the Equivalence Theorem is easily demonstrated at all orders in perturbation theory. Since the formalism makes the Equivalence Theorem self-ev...
Subjects
free text keywords: Nuclear and High Energy Physics, High Energy Physics - Phenomenology, High Energy Physics - Theory, Gauge fixing, Gauge anomaly, Hamiltonian lattice gauge theory, Introduction to gauge theory, BRST quantization, Quantum mechanics, Theoretical physics, Physics, Gauge covariant derivative, Gauge theory, Supersymmetric gauge theory
Funded by
SNSF| Particle Physics with high-quality data from the CERN LHC
Project
  • Funder: Swiss National Science Foundation (SNSF)
  • Project Code: CRSII2_141847
  • Funding stream: Programmes | Sinergia
,
EC| DAMESYFLA
Project
DAMESYFLA
Electroweak Symmetry Breaking, Flavor and Dark Matter: One Solution for Three Mysteries
  • Funder: European Commission (EC)
  • Project Code: 267985
  • Funding stream: FP7 | SP2 | ERC
16 references, page 1 of 2

[1] S. Dawson, Nucl. Phys. B 249 (1985) 42; G.L. Kane, W.W. Repko, W.B. Rolnick, Phys. Lett. B 148 (1984) 367.

[2] R. Kleiss, W.J. Stirling, Phys. Lett. B 182 (1986) 75.

[3] Z. Kunszt, D.E. Soper, Nucl. Phys. B 296 (1988) 253.

[4] P. Borel, R. Franceschini, R. Rattazzi, A. Wulzer, J. High Energy Phys. 1206 (2012) 122, arXiv:1202.1904 [hep-ph].

[5] M.S. Chanowitz, M.K. Gaillard, Nucl. Phys. B 261 (1985) 379.

[6] J. Horejsi, Czechoslov. J. Phys. 47 (1997) 951, arXiv:hep-ph/9603321.

[7] J. Bagger, C. Schmidt, Phys. Rev. D 41 (1990) 264; Y.-P. Yao, C.P. Yuan, Phys. Rev. D 38 (1988) 2237.

[8] T. Kugo, I. Ojima, Phys. Lett. B 73 (1978) 459; T. Kugo, I. Ojima, Prog. Theor. Phys. 60 (1978) 1869; T. Kugo, I. Ojima, Prog. Theor. Phys. 61 (1979) 294.

[9] N. Nakanishi, Phys. Rev. D 5 (1972) 1324.

[10] H.G.J. Veltman, Phys. Rev. D 41 (1990) 2294.

[11] F. Coradeschi, P. Lodone, Phys. Rev. D 87 (2013) 074026, arXiv:1211.1880 [hep-ph].

[12] G. Källén, Helv. Phys. Acta 25 (1952) 417.

[13] C. Becchi, A. Rouet, R. Stora, Commun. Math. Phys. 42 (1975) 127; G. Curci, R. Ferrari, Nuovo Cimento A 35 (1976) 273; G. Bandelloni, A. Blasi, C. Becchi, R. Collina, Ann. Inst. Henri Poincaré. Phys. Théor. 28 (1978) 255; P.A. Grassi, Nucl. Phys. B 560 (1999) 499, arXiv:hep-th/9908188.

[14] W.B. Kilgore, Phys. Lett. B 294 (1992) 257; H.-J. He, Y.-P. Kuang, X.-y. Li, Phys. Rev. Lett. 69 (1992) 2619; H.-J. He, Y.-P. Kuang, X.-y. Li, Phys. Rev. D 49 (1994) 4842; H.-J. He, W.B. Kilgore, Phys. Rev. D 55 (1997) 1515, arXiv:hep-ph/9609326.

[15] V.S. Fadin, L.N. Lipatov, A.D. Martin, M. Melles, Phys. Rev. D 61 (2000) 094002, arXiv:hep-ph/9910338; P. Ciafaloni, D. Comelli, Phys. Lett. B 446 (1999) 278, arXiv:hep-ph/9809321; M. Ciafaloni, P. Ciafaloni, D. Comelli, Phys. Rev. Lett. 84 (2000) 4810, arXiv:hep-ph/0001142.

16 references, page 1 of 2
Any information missing or wrong?Report an Issue