# Bayesian Model Choice in Cumulative Link Ordinal Regression Models

- Published: 28 Jan 2015
- Country: United Kingdom

- University of Cambridge United Kingdom

Agresti, A. (2010). Analysis of Ordinal Categorical Data. Wiley, 2nd edition. 2, 7, 8

Akaike, H. (1974). “A new look at statistical model identification.” IEEE Transactions on Automatic Control , AU-19: 195-223. 3

Albert, J. and Chib, S. (1997). “Bayesian methods for cumulative, sequential and twostep ordinal data regression models.” Technical report. 4, 8

Albert, J. H. and Chib, S. (1993). “Bayesian analysis of binary and polychotomous response data.” Journal of the American Statistical Association, 88(422): 669-679. 1, 3, 7 [OpenAIRE]

Ananth, C. V. and Kleinbaum, D. G. (1997). “Regression models for ordinal responses: A review of methods and applications.” International Journal of Epidemiology, 26(6): 1323-1333. 2 [OpenAIRE]

Bender, R. and Grouven, U. (1998). “Using binary logistic regression models for ordinal data with non-proportional odds.” Journal of Clinical Epidemiology, 51(10): 809-816. 2, 8, 16

Brant, R. (1990). “Assessing proportionality in the proportional odds model for ordinal logistic regression.” Biometrics, 46(4): 1171-1178. 2 [OpenAIRE]

Brooks, S. P., Giudici, P., and Roberts, G. O. (2003). “Efficient construction of reversible jump Markov chain Monte Carlo proposal distributions.” Journal of the Royal Statistical Society. Series B (Methodological), 65(1): 3-55. 13

Chib, S. (1995). “Marginal likelihood from the Gibbs output.” Journal of the American Statistical Association, 90(432): 1313-1321. 4 [OpenAIRE]

Chu, W. and Ghahramani, Z. (2005). “Gaussian processes for ordinal regression.” Journal of Machine Learning Research, 6: 1-48. 3, 4

Cole, S. R., Allison, P. D., and Ananth, C. V. (2004). “Estimation of cumulative odds ratios.” Annals of Epidemiology, 14: 172-178. 2

Congdon, P. (2005). Bayesian Models for Categorical Data. Wiley. 7, 8

Dellaportas, P., Forster, J. J., and Ntzoufras, I. (2002). “On Bayesian model and variable selection using MCMC.” Statistics and Computing, 12: 27-36. 4, 6

Diggle, P. J., Heagerty, P., Liang, K.-Y., and Zeger, S. L. (2002). Analysis of Longitudinal Data. Oxford University Press, 2nd edition. 3

Fahrmeier, L. and Tutz, G. (1994). Multivariate Statistical Modelling Based on Generalized Linear Models. Springer. 8

###### Related research

- University of Cambridge United Kingdom

Agresti, A. (2010). Analysis of Ordinal Categorical Data. Wiley, 2nd edition. 2, 7, 8

Akaike, H. (1974). “A new look at statistical model identification.” IEEE Transactions on Automatic Control , AU-19: 195-223. 3

Albert, J. and Chib, S. (1997). “Bayesian methods for cumulative, sequential and twostep ordinal data regression models.” Technical report. 4, 8

Albert, J. H. and Chib, S. (1993). “Bayesian analysis of binary and polychotomous response data.” Journal of the American Statistical Association, 88(422): 669-679. 1, 3, 7 [OpenAIRE]

Ananth, C. V. and Kleinbaum, D. G. (1997). “Regression models for ordinal responses: A review of methods and applications.” International Journal of Epidemiology, 26(6): 1323-1333. 2 [OpenAIRE]

Bender, R. and Grouven, U. (1998). “Using binary logistic regression models for ordinal data with non-proportional odds.” Journal of Clinical Epidemiology, 51(10): 809-816. 2, 8, 16

Brant, R. (1990). “Assessing proportionality in the proportional odds model for ordinal logistic regression.” Biometrics, 46(4): 1171-1178. 2 [OpenAIRE]

Brooks, S. P., Giudici, P., and Roberts, G. O. (2003). “Efficient construction of reversible jump Markov chain Monte Carlo proposal distributions.” Journal of the Royal Statistical Society. Series B (Methodological), 65(1): 3-55. 13

Chib, S. (1995). “Marginal likelihood from the Gibbs output.” Journal of the American Statistical Association, 90(432): 1313-1321. 4 [OpenAIRE]

Chu, W. and Ghahramani, Z. (2005). “Gaussian processes for ordinal regression.” Journal of Machine Learning Research, 6: 1-48. 3, 4

Cole, S. R., Allison, P. D., and Ananth, C. V. (2004). “Estimation of cumulative odds ratios.” Annals of Epidemiology, 14: 172-178. 2

Congdon, P. (2005). Bayesian Models for Categorical Data. Wiley. 7, 8

Dellaportas, P., Forster, J. J., and Ntzoufras, I. (2002). “On Bayesian model and variable selection using MCMC.” Statistics and Computing, 12: 27-36. 4, 6

Diggle, P. J., Heagerty, P., Liang, K.-Y., and Zeger, S. L. (2002). Analysis of Longitudinal Data. Oxford University Press, 2nd edition. 3

Fahrmeier, L. and Tutz, G. (1994). Multivariate Statistical Modelling Based on Generalized Linear Models. Springer. 8