publication . Article . Other literature type . Conference object . 2018

Humidity Measurement in Carbon Dioxide with Capacitive Humidity Sensors at Low Temperature and Pressure.

Jacek Majewski; Andreas Lorek;
Open Access
  • Published: 09 Aug 2018
  • Country: Germany
Abstract
70 &deg
Subjects
free text keywords: capacitive humidity sensors, SHT75, carbon dioxide, humidity, Mars in-situ measurements, experimental simulation chambers, Martian atmosphere, low temperature, low pressure, CO2, Chemical technology, TP1-1185, CO<sub>2</sub>, Article, Institut für Planetenforschung, Calibration, chemistry.chemical_compound, chemistry, Flow (psychology), Mars Exploration Program, Capacitive sensing, Materials science, Adsorption, Nuclear engineering, Atmosphere of Mars
Download fromView all 7 versions
Sensors
Article . 2018
Sensors
Article . 2018
Provider: Crossref
22 references, page 1 of 2

1. 2. Rummel, J.D.; Beaty, D.W.; Jones, M.A.; Bakermans, C.; Barlow, N.G.; Boston, P.J.; Chevrier, V.F.; Clark, B.C.; de Vera, J.-P.P.; Gough, R.V.; et al. A New Analysis of Mars “Special Regions”: Findings of the Second MEPAG Special Regions Science Analysis Group (SR-SAG2). Astrobiology 2014, 14, 887-968. [CrossRef] [PubMed]

Domagal-Goldman, S.D.; Wright, K.E.; Adamala, K.; Arina de la Rubia, L.; Bond, J.; Dartnell, L.R.; Goldman, A.D.; Lynch, K.; Naud, M.-E.; Paulino-Lima, I.G.; et al. The Astrobiology Primer v2.0. Astrobiology 2016, 16, 561-653. [CrossRef] [PubMed]

3. National Research Council; Division on Earth and Life Studies; Board on Life Sciences; Division on Engineering and Physical Sciences; Space Studies Board. Committee on an Astrobiology Strategy for the Exploration of Mars. An Astrobiology Strategy for the Exploration of Mars; National Academies Press: Washington, DC, USA, 2007; ISBN 978-0-309-10851-5.

4. Kereszturi, A.; Möhlmann, D.; Berczi, S.; Ganti, T.; Horvath, A.; Kuti, A.; Sik, A.; Szathmary, E. Indications of brine related local seepage phenomena on the northern hemisphere of Mars. Icarus 2010, 207, 149-164. [CrossRef]

5. Lorek, A.; Wagner, N. Supercooled interfacial water in fine-grained soils probed by dielectric spectroscopy. Cryosphere 2013, 7, 1839-1855. [CrossRef]

6. Pál, B.; Kereszturi, Á. Possibility of microscopic liquid water formation at landing sites on Mars and their observational potential. Icarus 2017, 282, 84-92. [CrossRef]

7. Mahaffy, P.R.; Webster, C.R.; Atreya, S.K.; Franz, H.; Wong, M.; Conrad, P.G.; Harpold, D.; Jones, J.J.; Leshin, L.A.; Manning, H.; et al. Abundance and Isotopic Composition of Gases in the Martian Atmosphere from the Curiosity Rover. Science 2013, 341, 263-266. [CrossRef] [PubMed] [OpenAIRE]

8. Lorek, A. Humidity measurement with capacitive humidity sensors between 70 C and 25 C in low vacuum. J. Sens. Sens. Syst. 2014, 3, 177-185. [CrossRef] [OpenAIRE]

9. Jensen, L.L.; Merrison, J.; Hansen, A.A.; Mikkelsen, K.A.; Kristoffersen, T.; Nørnberg, P.; Lomstein, B.A.; Finster, K. A Facility for Long-Term Mars Simulation Experiments: The Mars Environmental Simulation Chamber (MESCH). Astrobiology 2008, 8, 537-548. [CrossRef] [PubMed]

10. Sobrado, J.M.; Martín-Soler, J.; Martín-Gago, J.A. Mimicking Mars: A vacuum simulation chamber for testing environmental instrumentation for Mars exploration. Rev. Sci. Instrum. 2014, 85, 035111. [CrossRef] [PubMed]

11. Martin, D.; Cockell, C.S. PELS (Planetary Environmental Liquid Simulator): A New Type of Simulation Facility to Study Extraterrestrial Aqueous Environments. Astrobiology 2015, 15, 111-118. [CrossRef] [PubMed]

12. Zent, A.P.; Hecht, M.H.; Hudson, T.L.; Wood, S.E.; Chevrier, V.F. A revised calibration function and results for the Phoenix mission TECP relative humidity sensor: Phoenix Humidity Results. J. Geophys. Res. Planets 2016, 121, 626-651. [CrossRef] [OpenAIRE]

13. Gómez-Elvira, J.; Armiens, C.; Castañer, L.; Domínguez, M.; Genzer, M.; Gómez, F.; Haberle, R.; Harri, A.-M.; Jiménez, V.; Kahanpää, H.; et al. REMS: The Environmental Sensor Suite for the Mars Science Laboratory Rover. Space Sci. Rev. 2012, 170, 583-640. [CrossRef] [OpenAIRE]

14. Lorek, A.; Koncz, A. Simulation and measurement of extraterrestrial conditions for experiments on habitability with respect to Mars. In Habitability of Other Planets and Satellites; de Vera, J.-P., Seckbach, J., Eds.; Springer: Dordrecht, The Netherlands, 2013; Volume 28, pp. 145-162. ISBN 978-94-007-6545-0. [OpenAIRE]

15. Ghoshal, S.; Hazra, M.K. H2CO3 ! CO2 + H2O decomposition in the presence of H2O, HCOOH, CH3COOH, H2SO4 and HO2 radical: Instability of the gas-phase H2CO3 molecule in the troposphere and lower stratosphere. RSC Adv. 2015, 5, 17623-17635. [CrossRef]

22 references, page 1 of 2
Abstract
70 &deg
Subjects
free text keywords: capacitive humidity sensors, SHT75, carbon dioxide, humidity, Mars in-situ measurements, experimental simulation chambers, Martian atmosphere, low temperature, low pressure, CO2, Chemical technology, TP1-1185, CO<sub>2</sub>, Article, Institut für Planetenforschung, Calibration, chemistry.chemical_compound, chemistry, Flow (psychology), Mars Exploration Program, Capacitive sensing, Materials science, Adsorption, Nuclear engineering, Atmosphere of Mars
Download fromView all 7 versions
Sensors
Article . 2018
Sensors
Article . 2018
Provider: Crossref
22 references, page 1 of 2

1. 2. Rummel, J.D.; Beaty, D.W.; Jones, M.A.; Bakermans, C.; Barlow, N.G.; Boston, P.J.; Chevrier, V.F.; Clark, B.C.; de Vera, J.-P.P.; Gough, R.V.; et al. A New Analysis of Mars “Special Regions”: Findings of the Second MEPAG Special Regions Science Analysis Group (SR-SAG2). Astrobiology 2014, 14, 887-968. [CrossRef] [PubMed]

Domagal-Goldman, S.D.; Wright, K.E.; Adamala, K.; Arina de la Rubia, L.; Bond, J.; Dartnell, L.R.; Goldman, A.D.; Lynch, K.; Naud, M.-E.; Paulino-Lima, I.G.; et al. The Astrobiology Primer v2.0. Astrobiology 2016, 16, 561-653. [CrossRef] [PubMed]

3. National Research Council; Division on Earth and Life Studies; Board on Life Sciences; Division on Engineering and Physical Sciences; Space Studies Board. Committee on an Astrobiology Strategy for the Exploration of Mars. An Astrobiology Strategy for the Exploration of Mars; National Academies Press: Washington, DC, USA, 2007; ISBN 978-0-309-10851-5.

4. Kereszturi, A.; Möhlmann, D.; Berczi, S.; Ganti, T.; Horvath, A.; Kuti, A.; Sik, A.; Szathmary, E. Indications of brine related local seepage phenomena on the northern hemisphere of Mars. Icarus 2010, 207, 149-164. [CrossRef]

5. Lorek, A.; Wagner, N. Supercooled interfacial water in fine-grained soils probed by dielectric spectroscopy. Cryosphere 2013, 7, 1839-1855. [CrossRef]

6. Pál, B.; Kereszturi, Á. Possibility of microscopic liquid water formation at landing sites on Mars and their observational potential. Icarus 2017, 282, 84-92. [CrossRef]

7. Mahaffy, P.R.; Webster, C.R.; Atreya, S.K.; Franz, H.; Wong, M.; Conrad, P.G.; Harpold, D.; Jones, J.J.; Leshin, L.A.; Manning, H.; et al. Abundance and Isotopic Composition of Gases in the Martian Atmosphere from the Curiosity Rover. Science 2013, 341, 263-266. [CrossRef] [PubMed] [OpenAIRE]

8. Lorek, A. Humidity measurement with capacitive humidity sensors between 70 C and 25 C in low vacuum. J. Sens. Sens. Syst. 2014, 3, 177-185. [CrossRef] [OpenAIRE]

9. Jensen, L.L.; Merrison, J.; Hansen, A.A.; Mikkelsen, K.A.; Kristoffersen, T.; Nørnberg, P.; Lomstein, B.A.; Finster, K. A Facility for Long-Term Mars Simulation Experiments: The Mars Environmental Simulation Chamber (MESCH). Astrobiology 2008, 8, 537-548. [CrossRef] [PubMed]

10. Sobrado, J.M.; Martín-Soler, J.; Martín-Gago, J.A. Mimicking Mars: A vacuum simulation chamber for testing environmental instrumentation for Mars exploration. Rev. Sci. Instrum. 2014, 85, 035111. [CrossRef] [PubMed]

11. Martin, D.; Cockell, C.S. PELS (Planetary Environmental Liquid Simulator): A New Type of Simulation Facility to Study Extraterrestrial Aqueous Environments. Astrobiology 2015, 15, 111-118. [CrossRef] [PubMed]

12. Zent, A.P.; Hecht, M.H.; Hudson, T.L.; Wood, S.E.; Chevrier, V.F. A revised calibration function and results for the Phoenix mission TECP relative humidity sensor: Phoenix Humidity Results. J. Geophys. Res. Planets 2016, 121, 626-651. [CrossRef] [OpenAIRE]

13. Gómez-Elvira, J.; Armiens, C.; Castañer, L.; Domínguez, M.; Genzer, M.; Gómez, F.; Haberle, R.; Harri, A.-M.; Jiménez, V.; Kahanpää, H.; et al. REMS: The Environmental Sensor Suite for the Mars Science Laboratory Rover. Space Sci. Rev. 2012, 170, 583-640. [CrossRef] [OpenAIRE]

14. Lorek, A.; Koncz, A. Simulation and measurement of extraterrestrial conditions for experiments on habitability with respect to Mars. In Habitability of Other Planets and Satellites; de Vera, J.-P., Seckbach, J., Eds.; Springer: Dordrecht, The Netherlands, 2013; Volume 28, pp. 145-162. ISBN 978-94-007-6545-0. [OpenAIRE]

15. Ghoshal, S.; Hazra, M.K. H2CO3 ! CO2 + H2O decomposition in the presence of H2O, HCOOH, CH3COOH, H2SO4 and HO2 radical: Instability of the gas-phase H2CO3 molecule in the troposphere and lower stratosphere. RSC Adv. 2015, 5, 17623-17635. [CrossRef]

22 references, page 1 of 2
Any information missing or wrong?Report an Issue