publication . Other literature type . Article . Preprint . 2001

Sterile neutrino hot, warm, and cold dark matter

Abazajian, Kevork; Fuller, George M; Patel, Mitesh;
  • Published: 31 May 2001
  • Publisher: American Physical Society (APS)
  • Country: Mexico
Abstract
We calculate the incoherent resonant and non-resonant scattering production of sterile neutrinos in the early universe. We find ranges of sterile neutrino masses, vacuum mixing angles, and initial lepton numbers which allow these species to constitute viable hot, warm, and cold dark matter (HDM, WDM, CDM) candidates which meet observational constraints. The constraints considered here include energy loss in core collapse supernovae, energy density limits at big bang nucleosynthesis, and those stemming from sterile neutrino decay: limits from observed cosmic microwave background anisotropies, diffuse extragalactic background radiation, and Li-6/D overproduction. ...
Subjects
arXiv: High Energy Physics::PhenomenologyHigh Energy Physics::Experiment
free text keywords: Astronomical And Space Sciences, Atomic, Molecular, Nuclear, Particle And Plasma Physics, Quantum Physics, Nuclear & Particles Physics, Atomic, Molecular, Nuclear, Particle And Plasma Physics, Physics, Cold dark matter, Neutrino, Particle physics, Dark matter, Warm dark matter, Big Bang nucleosynthesis, Neutrino decoupling, Sterile neutrino, Hot dark matter, Astrophysics, High Energy Physics - Experiment, High Energy Physics - Phenomenology, Nuclear Experiment, Nuclear Theory
124 references, page 1 of 9

[1] M. Gell-Mann, P. Ramond, and R. Slansky, in Supergravity, edited by P. van Nieuwenhuizen and D.Z. Freedman (North-Holland, Amsterdam, 1979); T. Yanagida, in Proceedings of the Workshop on Unified Theories and Baryon Number in the Universe, edited by A. Sawada and A. Sugamoto, K.E.K. preprint 79-18 (1979); R.N. Mohapatra and G. Senjanovic, Phys. Rev. Lett. 44, 912 (1980).

[2] Y. Fukuda et al. (Super-Kamiokande Coll.), Phys. Rev. Lett. 81, 1562 (1998).

[3] T.J. Haines et al. (IMB Coll.), Phys. Rev. Lett. 57, 1986 (1986).

[4] R. Davis, D.S. Harmer, and K.C. Hoffman, Phys. Rev. Lett. 21, 1205 (1968).

[5] J.N. Bahcall, P. Krastev, and A.Yu. Smirnov, Phys. Rev. D 58, 096016 (1998); M.C. Gonzalez-Garcia, M. Maltoni, C. Pen˜a-Garay, and J.W.F. Valle, to appear, Phys. Rev. D, hep-ph/0009350, and references therein.

[6] C. Athanassopoulos et al., Phys. Rev. Lett. 75, 2650 (1996); 77, 3082 (1996); 81, 1774 (1998); Phys. Rev. C 54, 2685 (1996); 58, 2489 (1998).

[7] D.E. Groom et al, Eur. Phys. J. C15, 1 (2000).

[8] G.M. Fuller and R.A. Malaney, Phys. Rev. D 43, 3136 (1991).

[9] E.W. Kolb and M.S. Turner, Phys. Rev. Lett. 67, 5 (1991).

[10] S. Dodelson and L.M. Widrow, Phys. Rev. Lett. 72, 17 (1994).

[11] X. Shi and G.M. Fuller, Phys. Rev. Lett. 82, 2832 (1999).

[12] S.P. Mikheyev and A.Yu. Smirnov, Yad. Fiz. 42, 1441 (1985) [Sov. J. Nucl. Phys. 42, 913 (1985)]; L. Wolfenstein, Phys. Rev. D 17, 2369 (1978).

[13] A.B. Balantekin, J.F. Beacom and J.M. Fetter, Phys. Lett. B 427, 317 (1998); A.B. Balantekin and J.F. Beacom, Phys. Rev. D 54, 6323 (1996).

[14] B. Zeitnitz et al., Prog. Part. Nucl. Phys. 40, 169 (1998); B. Armbruster et al., Phys. Rev. C 57, 3414 (1998); K. Eitel and B. Zeitnitz, Nucl. Phys. Proc. Suppl. 77, 212 (1999).

[15] C. Eitel, New J. Phys. 2, 1 (2000).

124 references, page 1 of 9
Powered by OpenAIRE Research Graph
Any information missing or wrong?Report an Issue