17 references, page 1 of 2

[1] C. Rovelli, “Strings, loops and others: a critical survey of the present approaches to quantum gravity”, in Gravitation and Relativity at the Turn of the Millennium, edited by N. Dadhich and J. Narlikar (Inter University Centre for Astronomy and Astrophysics: India, 1998). C. Rovelli, “Loop quantum gravity”, Living Reviews in Relativity 1; gr-qc/9710008.

[2] R. C. Tolman, Relativity, Thermodynamics, and Cosmology, Clarendon Press, Oxford, 1934.

[3] C. Rovelli, “Statistical mechanics of gravity and the thermodynamical origin of time”, Class. Quantum Grav. 10, 1549 (1993). C. Rovelli, “The statistical state of the universe”, Class. Quantum Grav. 10, 1567 (1993). [OpenAIRE]

[4] A. Connes and C. Rovelli, “Von Neumann algebra automorphisms and time-thermodynamics relation in generally covariant quantum theories”, Class. Quantum Grav. 11, 2899 (1994).

[5] J. W. Gibbs, Elementary principles in statistical mechanics (Yale University Press: New Haven, 1902).

[6] A. Einstein, Ann. Phys. 9, 417 (1902); 11, 170 (1903).

[7] P. Ehrenfest, T. Ehrenfest, Enzyklopa¨die der mathematischen Wissenshaften, Bd. IV, Teil 32, Leipzig 1911.

[8] L. Boltzmann, Wien. Ber. 76, 373 (1877).

[9] A. Komar, Phys. Rev. D 18, 1881 (1978); 18, 1887 (1978); 18, 3617 (1978), V. V. Molotkov and I. T. Todorov, Commun. Math. Phys. 79, 111 (1981), F. Rohrlich, Phys. Rev. D, 23, 1305 (1981).

[10] P. A. M. Dirac Lectures on Quantum Mechanics (New York: Belfer Graduate School of Science, 1964).

[11] C. Rovelli, “Quantum mechanics without time: A model” Physical Review D 42, 2638 (1991). C. Rovelli, “Time in quantum gravity: An hypothesis” Physical Review D 43, 442 (1991). C. Rovelli, “Quantum evolving constants”, Physical Review D 44, 1339 (1991). [OpenAIRE]

[12] M. Montesinos, “Relational evolution of the degrees of freedom of generally covariant quantum theories,” Gen. Rel. Grav. 33, 1 (2001); gr-qc/0002023.

[13] C. Rovelli, “Is there incompatibility between the ways time is treated in general relativity and in standard quantum mechanics?”, in Conceptual problems of quantum gravity. Osgood Hill conference on conceptual problems of quantum gravity, Boston 1988, eds A Ashtekar and J Stachel (Birkhauser, New York, 1991). [OpenAIRE]

[14] L. Landau, Z. Phys. 45, 430 (1927). J. von Neumann, Mathematical foundations of quantum mechanics (Princeton University Press: Princeton, 1955).

[15] M. Montesinos, C. Rovelli and T. Thiemann, Phys. Rev. D 60, 044009 (1999).

17 references, page 1 of 2