publication . Article . 2016

Multi-Scale Characean Experimental System: From Electrophysiology of Membrane Transporters to Cell-to-Cell Connectivity, Cytoplasmic Streaming and Auxin Metabolism

Mary Jane Beilby;
Open Access English
  • Published: 25 Jul 2016 Journal: Frontiers in Plant Science, volume 7 (issn: 1664-462X, Copyright policy)
  • Publisher: Frontiers Media S.A.
Abstract
The morphology of characean algae could be mistaken for a higher plant: stem-like axes with leaf-like branchlets anchored in the soil by root-like rhizoids. However, all of these structures are made up of giant multinucleate cells separated by multicellular nodal complexes. The excised internodal cells survive long enough for the nodes to give rise to new thallus. The size of the internodes and their thick cytoplasmic layer minimize impalement injury and allow specific micro-electrode placement. The cell structure can be manipulated by centrifugation, perfusion of cell contents or creation of cytoplasmic droplets, allowing access to both vacuolar and cytoplasmic...
Subjects
Medical Subject Headings: fungi
free text keywords: Plant Science, Characeae, cell-to-cell transport, cytoplasmic droplets, cytoplasmic streaming, metabolic pathways, plasma membrane transporters, plasmodesmata, tonoplast transporters, Review, Plant culture, SB1-1110, Cell biology, Cell, medicine.anatomical_structure, medicine, Multicellular organism, Botany, Multinucleate, Thallus, Plasmodesma, NODAL, Cytoplasm, Biology
Related Organizations
160 references, page 1 of 11

Barbier-Brygoo H. Vinauger M. Colcombet J. Ephritikhine G. Frachisse J.-M. Maurel C. (2000). Anion channels in higher plants: functional characterization, molecular structure and physiological role. Biochim. Biophys. Acta 1465 199–218. 10.1016/S0005-2736(00)00139-5 [OpenAIRE] [DOI]

Barr C. E. Broyer T. (1964). Effect of light on sodium influx, membrane potential, and protoplasmic streaming in Nitella. Plant Physiol. 39 48–52. 10.1104/pp.39.1.48 [OpenAIRE] [DOI]

Beilby M. J. (1985). Potassium channels at Chara plasmalemma. J. Exp. Bot. 36 228–239. 10.1093/jxb/36.2.228 [OpenAIRE] [DOI]

Beilby M. J. (1989). “Electrophysiology of giant algal cells,” Methods in Enzymology Vol. 174 eds Fleischer S. Fleischer B. (San Diego, CA: Academic Press) 403–443.

Beilby M. J. (2015). Salt tolerance at single cell level in giant-celled Characeae. Front. Plant Sci. 6:226. 10.3389/fpls.2015.00226 [OpenAIRE] [DOI]

Beilby M. J. Bisson M. A. (2012). “pH banding in charophyte algae,” in Plant Electrophysiology Chap. 11 ed. Volkov A. (Berlin: Springer-Verlag) 247–271. [OpenAIRE]

Beilby M. J. Casanova M. T. (2013). The Physiology of Characean Cells. Berlin: Springer.

Beilby M. J. Cherry C. A. Shepherd V. A. (1999). Dual regulation response to hypertonic stress in Lamprothaminum papulosum. Plant Cell Environ. 22 347–359. 10.1046/j.1365-3040.1999.00406.x [OpenAIRE] [DOI]

Beilby M. J. Turi C. E. Baker T. C. Tymm F. J. M. Murch S. J. (2015). Circadian changes in endogenous concentrations of indole-3-acetic acid, melatonin, serotonin, abscisic acid and jasmonic acid in Characeae (Chara australis Brown). Plant Signal. Behav. 10:e1082697. 10.1080/15592324.2015.1082697 [OpenAIRE] [DOI]

Beilby M. J. Walker N. A. (1981). Chloride transport in Chara: I. kinetics and current-voltage curves for a probable proton symport. J. Exp. Bot. 32 43–54. 10.1093/jxb/32.1.43 [OpenAIRE] [DOI]

Berecki G. Eijken M. Van Iren F. Van Duijn B. (2001). Tonoplast anion channel activity modulation by pH in Chara corallina. J. Membr. Biol. 184 131–141. 10.1007/s00232-001-0081-6 [OpenAIRE] [DOI]

Berecki G. Varga Z. Van Iren F. Van Duijn B. (1999). Anion channels in Chara corallina tonoplast membrane: calcium dependence and rectfication. J. Membr. Biol. 172 159–168. 10.1007/s002329900593 [OpenAIRE] [DOI]

Bertl A. (1989). Current-voltage relationships of sodium-sensitive potassium channel in the tonoplast of Chara corallina. J. Membr. Biol. 109 9–19. 10.1007/BF01870786 [DOI]

Bennett T. A. Liu M. M. Aoyama T. Bi erfreund N. M. Braun M. Coudert Y. (2014). Plasma membrane-targeted PIN proteins drive shoot development in a moss. Curr. Biol. 24 2776–2785 10.1016/j.cub.2014.09.054 [OpenAIRE] [DOI]

Beyenbach K. W. Wieczorek H. (2006). The V-type H+ ATPase: molecular structure and function, physiological roles and regulation. J. Exp. Biol. 209 577–589. 10.1242/jeb.02014 [OpenAIRE] [DOI]

160 references, page 1 of 11
Abstract
The morphology of characean algae could be mistaken for a higher plant: stem-like axes with leaf-like branchlets anchored in the soil by root-like rhizoids. However, all of these structures are made up of giant multinucleate cells separated by multicellular nodal complexes. The excised internodal cells survive long enough for the nodes to give rise to new thallus. The size of the internodes and their thick cytoplasmic layer minimize impalement injury and allow specific micro-electrode placement. The cell structure can be manipulated by centrifugation, perfusion of cell contents or creation of cytoplasmic droplets, allowing access to both vacuolar and cytoplasmic...
Subjects
Medical Subject Headings: fungi
free text keywords: Plant Science, Characeae, cell-to-cell transport, cytoplasmic droplets, cytoplasmic streaming, metabolic pathways, plasma membrane transporters, plasmodesmata, tonoplast transporters, Review, Plant culture, SB1-1110, Cell biology, Cell, medicine.anatomical_structure, medicine, Multicellular organism, Botany, Multinucleate, Thallus, Plasmodesma, NODAL, Cytoplasm, Biology
Related Organizations
160 references, page 1 of 11

Barbier-Brygoo H. Vinauger M. Colcombet J. Ephritikhine G. Frachisse J.-M. Maurel C. (2000). Anion channels in higher plants: functional characterization, molecular structure and physiological role. Biochim. Biophys. Acta 1465 199–218. 10.1016/S0005-2736(00)00139-5 [OpenAIRE] [DOI]

Barr C. E. Broyer T. (1964). Effect of light on sodium influx, membrane potential, and protoplasmic streaming in Nitella. Plant Physiol. 39 48–52. 10.1104/pp.39.1.48 [OpenAIRE] [DOI]

Beilby M. J. (1985). Potassium channels at Chara plasmalemma. J. Exp. Bot. 36 228–239. 10.1093/jxb/36.2.228 [OpenAIRE] [DOI]

Beilby M. J. (1989). “Electrophysiology of giant algal cells,” Methods in Enzymology Vol. 174 eds Fleischer S. Fleischer B. (San Diego, CA: Academic Press) 403–443.

Beilby M. J. (2015). Salt tolerance at single cell level in giant-celled Characeae. Front. Plant Sci. 6:226. 10.3389/fpls.2015.00226 [OpenAIRE] [DOI]

Beilby M. J. Bisson M. A. (2012). “pH banding in charophyte algae,” in Plant Electrophysiology Chap. 11 ed. Volkov A. (Berlin: Springer-Verlag) 247–271. [OpenAIRE]

Beilby M. J. Casanova M. T. (2013). The Physiology of Characean Cells. Berlin: Springer.

Beilby M. J. Cherry C. A. Shepherd V. A. (1999). Dual regulation response to hypertonic stress in Lamprothaminum papulosum. Plant Cell Environ. 22 347–359. 10.1046/j.1365-3040.1999.00406.x [OpenAIRE] [DOI]

Beilby M. J. Turi C. E. Baker T. C. Tymm F. J. M. Murch S. J. (2015). Circadian changes in endogenous concentrations of indole-3-acetic acid, melatonin, serotonin, abscisic acid and jasmonic acid in Characeae (Chara australis Brown). Plant Signal. Behav. 10:e1082697. 10.1080/15592324.2015.1082697 [OpenAIRE] [DOI]

Beilby M. J. Walker N. A. (1981). Chloride transport in Chara: I. kinetics and current-voltage curves for a probable proton symport. J. Exp. Bot. 32 43–54. 10.1093/jxb/32.1.43 [OpenAIRE] [DOI]

Berecki G. Eijken M. Van Iren F. Van Duijn B. (2001). Tonoplast anion channel activity modulation by pH in Chara corallina. J. Membr. Biol. 184 131–141. 10.1007/s00232-001-0081-6 [OpenAIRE] [DOI]

Berecki G. Varga Z. Van Iren F. Van Duijn B. (1999). Anion channels in Chara corallina tonoplast membrane: calcium dependence and rectfication. J. Membr. Biol. 172 159–168. 10.1007/s002329900593 [OpenAIRE] [DOI]

Bertl A. (1989). Current-voltage relationships of sodium-sensitive potassium channel in the tonoplast of Chara corallina. J. Membr. Biol. 109 9–19. 10.1007/BF01870786 [DOI]

Bennett T. A. Liu M. M. Aoyama T. Bi erfreund N. M. Braun M. Coudert Y. (2014). Plasma membrane-targeted PIN proteins drive shoot development in a moss. Curr. Biol. 24 2776–2785 10.1016/j.cub.2014.09.054 [OpenAIRE] [DOI]

Beyenbach K. W. Wieczorek H. (2006). The V-type H+ ATPase: molecular structure and function, physiological roles and regulation. J. Exp. Biol. 209 577–589. 10.1242/jeb.02014 [OpenAIRE] [DOI]

160 references, page 1 of 11
Powered by OpenAIRE Open Research Graph
Any information missing or wrong?Report an Issue
publication . Article . 2016

Multi-Scale Characean Experimental System: From Electrophysiology of Membrane Transporters to Cell-to-Cell Connectivity, Cytoplasmic Streaming and Auxin Metabolism

Mary Jane Beilby;