publication . Preprint . Other literature type . 2019

Linked networks reveal dual roles of insect dispersal and species sorting for bacterial communities in flowers

Jay A. Rosenheim; Ash T. Zemenick; Ash T. Zemenick; Rachel L. Vannette;
Open Access
  • Published: 20 Nov 2019
  • Publisher: Cold Spring Harbor Laboratory
Abstract
<jats:title>Abstract</jats:title><jats:p>Due to the difficulty of tracking microbial dispersal, it rarely possible to disentangle the relative importance of dispersal and species sorting for microbial community assembly. Here, we leverage a detailed multilevel network to examine drivers of bacterial community assembly within flowers. We show that plant species with similar visitor communities tend to have similar bacterial communities, and visitor identity to be more important than dispersal rate in structuring floral bacterial communities. However, plants occupied divergent positions in plant-insect and plant-microbe networks, suggesting an important role for s...
Subjects
Medical Subject Headings: food and beveragesfungi
free text keywords: Species sorting, Biological dispersal, Biology, Ecology, Microbial population biology, Network approach, Insect, media_common.quotation_subject, media_common, Structuring, Visitor pattern, Plant species
Funded by
NSF| Graduate Research Fellowship Program (GRFP)
Project
  • Funder: National Science Foundation (NSF)
  • Project Code: 1148897
  • Funding stream: Directorate for Education & Human Resources | Division of Graduate Education
,
NSF| DISSERTATION RESEARCH: Flowers as hubs of nectar-microbe diversity and dispersal in flower visitor networks
40 references, page 1 of 3

Aleklett, K., M. Hart, and A. Shade. 2014. The microbial ecology of flowers: an emerging frontier in phyllosphere research. Botany 92:253-266. [OpenAIRE]

Bascompte, J., P. Jordano, C. J. Melián, and J. M. Olesen. 2003. The nested assembly of plantanimal mutualistic networks. Proceedings of the National Academy of Sciences of the United States of America 100:9383-9387. [OpenAIRE]

Belisle, M., K. G. Peay, and T. Fukami. 2012. Flowers as islands: spatial distribution of nectarinhabiting microfungi among plants of Mimulus aurantiacus, a hummingbird-pollinated shrub. Microbial Ecology 63:711-8.

Block, A. K., E. Yakubova, and J. R. Widhalm. 2019. Specialized naphthoquinones present in Impatiens glandulifera nectaries inhibit the growth of fungal nectar microbes. Plant Direct 3:e00132. [OpenAIRE]

Brysch-Herzberg, M. 2004. Ecology of yeasts in plant-bumblebee mutualism in Central Europe. FEMS microbiology ecology 50:87-100. [OpenAIRE]

Burdon, R. C., R. R. Junker, D. G. Scofield, and A. L. Parachnowitsch. 2018. Bacteria colonising Penstemon digitalis show volatile and tissue-specific responses to a natural concentration range of the floral volatile linalool. Chemoecology 28:11-19. [OpenAIRE]

Burns, A. R., W. Z. Stephens, K. Stagaman, S. Wong, J. F. Rawls, K. Guillemin, and B. J. M. Bohannan. 2016. Contribution of neutral processes to the assembly of gut microbial communities in the zebrafish over host development. ISME Journal 10:655-664.

Carter, C., and R. W. Thornburg. 2004. Is the nectar redox cycle a floral defense against microbial attack? Trends in Plant Science 9:5-9.

Chappell, C. R., and T. Fukami. 2018. Nectar yeasts: a natural microcosm for ecology. Yeast. 35(6):417-423 [OpenAIRE]

Deshpande, V., Q. Wang, P. Greenfield, M. Charleston, A. Porras-Alfaro, C. R. Kuske, J. R. Cole, D. J. Midgley, and N. Tran-Dinh. 2016. Fungal identification using a Bayesian classifier and the Warcup training set of internal transcribed spacer sequences. Mycologia 108:1-5.

Dormann, C., and R. Strauss. 2013. Detecting modules in quantitative bipartite networks: the QuaBiMo algorithm. arXiv preprint arXiv 1304.3218.

Fontaine, C., P. R. Guimarães, S. Kéfi, N. Loeuille, J. Memmott, W. H. van der Putten, F. J. F. van Veen, and E. Thébault. 2011. The ecological and evolutionary implications of merging different types of networks. Ecology Letters 14:1170-1181.

Friesen, M. L. 2013. Microbially Mediated Plant Functional Traits. Molecular Microbial Ecology of the Rhizosphere 1:87-102.

Fründ, J., K. S. McCann, and N. M. Williams. 2016. Sampling bias is a challenge for quantifying specialization and network structure: Lessons from a quantitative niche model. Oikos 125:502-513.

Graystock, P., D. Goulson, and W. O. H. Hughes. 2015. Parasites in bloom: flowers aid dispersal and transmission of pollinator parasites within and between bee species. Proceedings of the Royal Society B. 282: 20151371 [OpenAIRE]

40 references, page 1 of 3
Abstract
<jats:title>Abstract</jats:title><jats:p>Due to the difficulty of tracking microbial dispersal, it rarely possible to disentangle the relative importance of dispersal and species sorting for microbial community assembly. Here, we leverage a detailed multilevel network to examine drivers of bacterial community assembly within flowers. We show that plant species with similar visitor communities tend to have similar bacterial communities, and visitor identity to be more important than dispersal rate in structuring floral bacterial communities. However, plants occupied divergent positions in plant-insect and plant-microbe networks, suggesting an important role for s...
Subjects
Medical Subject Headings: food and beveragesfungi
free text keywords: Species sorting, Biological dispersal, Biology, Ecology, Microbial population biology, Network approach, Insect, media_common.quotation_subject, media_common, Structuring, Visitor pattern, Plant species
Funded by
NSF| Graduate Research Fellowship Program (GRFP)
Project
  • Funder: National Science Foundation (NSF)
  • Project Code: 1148897
  • Funding stream: Directorate for Education & Human Resources | Division of Graduate Education
,
NSF| DISSERTATION RESEARCH: Flowers as hubs of nectar-microbe diversity and dispersal in flower visitor networks
40 references, page 1 of 3

Aleklett, K., M. Hart, and A. Shade. 2014. The microbial ecology of flowers: an emerging frontier in phyllosphere research. Botany 92:253-266. [OpenAIRE]

Bascompte, J., P. Jordano, C. J. Melián, and J. M. Olesen. 2003. The nested assembly of plantanimal mutualistic networks. Proceedings of the National Academy of Sciences of the United States of America 100:9383-9387. [OpenAIRE]

Belisle, M., K. G. Peay, and T. Fukami. 2012. Flowers as islands: spatial distribution of nectarinhabiting microfungi among plants of Mimulus aurantiacus, a hummingbird-pollinated shrub. Microbial Ecology 63:711-8.

Block, A. K., E. Yakubova, and J. R. Widhalm. 2019. Specialized naphthoquinones present in Impatiens glandulifera nectaries inhibit the growth of fungal nectar microbes. Plant Direct 3:e00132. [OpenAIRE]

Brysch-Herzberg, M. 2004. Ecology of yeasts in plant-bumblebee mutualism in Central Europe. FEMS microbiology ecology 50:87-100. [OpenAIRE]

Burdon, R. C., R. R. Junker, D. G. Scofield, and A. L. Parachnowitsch. 2018. Bacteria colonising Penstemon digitalis show volatile and tissue-specific responses to a natural concentration range of the floral volatile linalool. Chemoecology 28:11-19. [OpenAIRE]

Burns, A. R., W. Z. Stephens, K. Stagaman, S. Wong, J. F. Rawls, K. Guillemin, and B. J. M. Bohannan. 2016. Contribution of neutral processes to the assembly of gut microbial communities in the zebrafish over host development. ISME Journal 10:655-664.

Carter, C., and R. W. Thornburg. 2004. Is the nectar redox cycle a floral defense against microbial attack? Trends in Plant Science 9:5-9.

Chappell, C. R., and T. Fukami. 2018. Nectar yeasts: a natural microcosm for ecology. Yeast. 35(6):417-423 [OpenAIRE]

Deshpande, V., Q. Wang, P. Greenfield, M. Charleston, A. Porras-Alfaro, C. R. Kuske, J. R. Cole, D. J. Midgley, and N. Tran-Dinh. 2016. Fungal identification using a Bayesian classifier and the Warcup training set of internal transcribed spacer sequences. Mycologia 108:1-5.

Dormann, C., and R. Strauss. 2013. Detecting modules in quantitative bipartite networks: the QuaBiMo algorithm. arXiv preprint arXiv 1304.3218.

Fontaine, C., P. R. Guimarães, S. Kéfi, N. Loeuille, J. Memmott, W. H. van der Putten, F. J. F. van Veen, and E. Thébault. 2011. The ecological and evolutionary implications of merging different types of networks. Ecology Letters 14:1170-1181.

Friesen, M. L. 2013. Microbially Mediated Plant Functional Traits. Molecular Microbial Ecology of the Rhizosphere 1:87-102.

Fründ, J., K. S. McCann, and N. M. Williams. 2016. Sampling bias is a challenge for quantifying specialization and network structure: Lessons from a quantitative niche model. Oikos 125:502-513.

Graystock, P., D. Goulson, and W. O. H. Hughes. 2015. Parasites in bloom: flowers aid dispersal and transmission of pollinator parasites within and between bee species. Proceedings of the Royal Society B. 282: 20151371 [OpenAIRE]

40 references, page 1 of 3
Any information missing or wrong?Report an Issue