publication . Preprint . Other literature type . Article . 2015

Covariance in models of loop quantum gravity: Spherical symmetry

Martin Bojowald; Suddhasattwa Brahma; Juan D. Reyes;
Open Access English
  • Published: 31 Aug 2015
Abstract
Comment: 29 pages
Subjects
free text keywords: General Relativity and Quantum Cosmology, High Energy Physics - Theory, Canonical quantization, Constraint algebra, Quantum gravity, Quantum geometry, Quantization (physics), Theoretical physics, Loop quantum gravity, Physics, Canonical quantum gravity, Spin foam, Classical mechanics
Related Organizations
Funded by
NSF| Effective Descriptions of Quantum Gravity and Cosmology
Project
  • Funder: National Science Foundation (NSF)
  • Project Code: 1307408
  • Funding stream: Directorate for Mathematical & Physical Sciences | Division of Physics
47 references, page 1 of 4

[2] S. A. Hojman, K. Kuchaˇr, and C. Teitelboim, Geometrodynamics Regained, Ann. Phys. (New York) 96 (1976) 88-135

[3] M. Bojowald, G. Hossain, M. Kagan, and S. Shankaranarayanan, Anomaly freedom in perturbative loop quantum gravity, Phys. Rev. D 78 (2008) 063547, [arXiv:0806.3929]

[4] T. Cailleteau, L. Linsefors, and A. Barrau, Anomaly-free perturbations with inversevolume and holonomy corrections in Loop Quantum Cosmology, Class. Quantum Grav. 31 (2014) 125011, [arXiv:1307.5238] [OpenAIRE]

[5] J. D. Reyes, Spherically Symmetric Loop Quantum Gravity: Connections to 2- Dimensional Models and Applications to Gravitational Collapse, PhD thesis, The Pennsylvania State University, 2009

[6] M. Bojowald, J. D. Reyes, and R. Tibrewala, Non-marginal LTB-like models with inverse triad corrections from loop quantum gravity, Phys. Rev. D 80 (2009) 084002, [arXiv:0906.4767] [OpenAIRE]

[7] A. Kreienbuehl, V. Husain, and S. S. Seahra, Modified general relativity as a model for quantum gravitational collapse, Class. Quantum Grav. 29 (2012) 095008, [arXiv:1011.2381] [OpenAIRE]

[8] M. Bojowald, G. M. Paily, and J. D. Reyes, Discreteness corrections and higher spatial derivatives in effective canonical quantum gravity, Phys. Rev. D 90 (2014) 025025, [arXiv:1402.5130] [OpenAIRE]

[9] A. Perez and D. Pranzetti, On the regularization of the constraints algebra of Quantum Gravity in 2+1 dimensions with non-vanishing cosmological constant, Class. Quantum Grav. 27 (2010) 145009, [arXiv:1001.3292]

[10] A. Henderson, A. Laddha, and C. Tomlin, Constraint algebra in LQG reloaded : Toy model of a U(1)3 Gauge Theory I, Phys. Rev. D 88 (2013) 044028, [arXiv:1204.0211]

[11] A. Henderson, A. Laddha, and C. Tomlin, Constraint algebra in LQG reloaded : Toy model of an Abelian gauge theory - II Spatial Diffeomorphisms, Phys. Rev. D 88 (2013) 044029, [arXiv:1210.3960] [OpenAIRE]

[12] C. Tomlin and M. Varadarajan, Towards an Anomaly-Free Quantum Dynamics for a Weak Coupling Limit of Euclidean Gravity, Phys. Rev. D 87 (2013) 044039, [arXiv:1210.6869]

[13] S. Brahma, Spherically symmetric canonical quantum gravity, Phys. Rev. D 91 (2015) 124003, [arXiv:1411.3661] [OpenAIRE]

[14] T. Thiemann and H. A. Kastrup, Canonical Quantization of Spherically Symmetric Gravity in Ashtekar's Self-Dual Representation, Nucl. Phys. B 399 (1993) 211-258, [gr-qc/9310012] [OpenAIRE]

[15] H. A. Kastrup and T. Thiemann, Spherically Symmetric Gravity as a Completely Integrable System, Nucl. Phys. B 425 (1994) 665-686, [gr-qc/9401032] [OpenAIRE]

[16] K. V. Kuchaˇr, Geometrodynamics of Schwarzschild Black Holes, Phys. Rev. D 50 (1994) 3961-3981

47 references, page 1 of 4
Any information missing or wrong?Report an Issue