publication . Other literature type . Article . 2017

Effects of temperature and drought on early life stages in three species of butterflies: Mortality of early life stages as a key determinant of vulnerability to climate change?

Michael Klockmann; Klaus Fischer;
Open Access
  • Published: 11 Nov 2017
  • Publisher: Wiley
Abstract
Abstract Anthropogenic climate change poses substantial challenges to biodiversity conservation. Well‐documented responses include phenological and range shifts, and declines in cold but increases in warm‐adapted species. Thus, some species will suffer while others will benefit from ongoing change, although the biological features determining the prospects of a given species under climate change are largely unknown. By comparing three related butterfly species of different vulnerability to climate change, we show that stress tolerance during early development may be of key importance. The arguably most vulnerable species showed the strongest decline in egg hatch...
Subjects
Medical Subject Headings: sense organs
free text keywords: Original Research, copper butterfly, desiccation resistance, early developmental stages, environmental stress, food stress, heat stress, Lycaena species, Ecology, Ecology, Evolution, Behavior and Systematics, Nature and Landscape Conservation
64 references, page 1 of 5

Addo‐Bediako, A., Chown, S. L., & Gaston, K. J. (2001). Revisiting water loss in insects: A large scale view. Journal of Insect Physiology, 47, 1377–1388. https://doi.org/10.1016/S0022-1910(01)00128-7 12770144 [PubMed]

Anderson, A. R., Collinge, J. E., Hoffmann, A. A., Kellett, M., & McKechnie, S. W. (2003). Thermal tolerance trade‐offs associated with the right arm of chromosome 3 and marked by the hsr‐omega gene in Drosophila melanogaster . Heredity, 90, 195–202. https://doi.org/10.1038/sj.hdy.6800220 12634827 [PubMed]

Andrew, N. R., Hart, R. A., Jung, M.‐P., Hemmings, Z., & Terblanche, J. S. (2013). Can temperate insects take the heat? A case study of the physiological and behavioural responses in a common ant, Iridomyrmex purpureus (Formicidae), with potential climate change. Journal of Insect Physiology, 59, 870–880. https://doi.org/10.1016/j.jinsphys.2013.06.003 23806604 [OpenAIRE] [PubMed]

Battisti, D. S., & Naylor, R. L. (2009). Historical warnings of future food insecurity with unprecedented seasonal heat. Science, 323, 240–244. https://doi.org/10.1126/science.1164363 19131626 [PubMed]

Bauerfeind, S. S., Theisen, A., & Fischer, K. (2008). Patch occupancy in the endangered butterfly Lycaena helle in a fragmented landscape: Effects of habitat quality, patch size and isolation. Journal of Insect Conservation, 13, 271–277.

Beaumont, L. J., & Hughes, L. (2002). Potential changes in the distributions of latitudinally restricted Australian butterfly species in response to climate change. Global Change Biology, 8, 954–971. https://doi.org/10.1046/j.1365-2486.2002.00490.x

Binot‐Hafke, M., Balzer, S., Becker, N., Gruttke, H., Haupt, H., Hofbauer, N., … Strauch, M. (2011). Rote liste gefährdeter tiere, pflanzen und pilze Deutschlands. Volume 3: Wirbellose tiere (Part 1). Bonn, Germany: Bundesamt für Naturschutz.

Blackburn, S., van Heerwaarden, B., Kellermann, V., & Sgrò, C. M. (2014). Evolutionary capacity of upper thermal limits: Beyond single trait assessments. Journal of Experimental Biology, 217, 1918–1924. https://doi.org/10.1242/jeb.099184 24625644 [OpenAIRE] [PubMed]

Bowler, K., & Terblanche, J. S. (2008). Insect thermal tolerance: What is the role of ontogeny, ageing and senescence? Biological Reviews, 83, 339–355. https://doi.org/10.1111/brv.2008.83.issue-3 18979595 [PubMed]

Brook, B. W., Akçakaya, H. R., Keith, D. A., Mace, G. M., Pearson, R. G., & Araújo, M. B. (2009). Integrating bioclimate with population models to improve forecasts of species extinctions under climate change. Biology letters, 5, 723–725. https://doi.org/10.1098/rsbl.2009.0480 19625300 [OpenAIRE] [PubMed]

Brunzel, S., Bussmann, M., & Obergruber, H. (2008). Deutliche veränderungen von tagfalterzönosen als folge von ausbreitungsprozessen. Erste ergebnisse eines monitorings über 17 jahre. Natur und Landschaft, 83, 280–287.

Chown, S., Hoffmann, A., Kristensen, T., Angilletta, M., Stenseth, N., & Pertoldi, C. (2010). Adapting to climate change: A perspective from evolutionary physiology. Climate Research, 43, 3–15. https://doi.org/10.3354/cr00879

Chown, S. L., Sørensen, J. G., & Terblanche, J. S. (2011). Water loss in insects: An environmental change perspective. Journal of Insect Physiology, 57, 1070–1084. https://doi.org/10.1016/j.jinsphys.2011.05.004 21640726 [PubMed]

Cho wn, S. L., & Terblanche, J. S. (2006). Physiological diversity in insects: Ecological and evolutionary contexts. Advances in Insect Physiology, 33, 50–152. https://doi.org/10.1016/S0065-2806(06)33002-0 19212462 [OpenAIRE] [PubMed]

Clusella‐Trullas, S., Blackburn, T. M., & Chown, S. L. (2011). Climatic predictors of temperature performance curve parameters in ectotherms imply complex responses to climate change. American Naturalist, 177, 738–751. https://doi.org/10.1086/660021

64 references, page 1 of 5
Powered by OpenAIRE Research Graph
Any information missing or wrong?Report an Issue