publication . Article . Other literature type . 2019

Acceleration of the Measurement Time of Thermopiles Using Sigma-Delta Control.

Eduard Pérez; Joan Pons-Nin; Sandra Bermejo; V. Jimenez; Marina Ramón; Manuel Dominguez-Pumar;
Open Access English
  • Published: 18 Jul 2019 Journal: Sensors (Basel, Switzerland), volume 19, issue 14 (eissn: 1424-8220, Copyright policy)
  • Publisher: MDPI
  • Country: Spain
Abstract
This work presents a double sliding mode control designed for accelerating the measurement of heat fluxes using thermopiles. The slow transient response generated in the thermopile, when it is placed in contact with the surface to be measured, is due to the changes in the temperature distributions that this operation triggers. It is shown that under some conditions the proposed controls keep the temperature distribution of the whole system constant and that changes in the heat flux at the thermopile are almost instantaneously compensated by the controls. One-dimensional simulations and experimental results using a commercial thermopile, showing the goodness of t...
Subjects
free text keywords: Article, heat flux, thermopile, sliding mode control, sigma-delta, Electrical and Electronic Engineering, Analytical Chemistry, Atomic and Molecular Physics, and Optics, Biochemistry, :Enginyeria electrònica::Instrumentació i mesura::Sensors i actuadors [Àrees temàtiques de la UPC], Nanotechnology, Nanotecnologia, Chemical technology, TP1-1185, Acceleration, Transient response, Whole systems, Mechanics, Delta-sigma modulation, Physics, Flux (metallurgy)
42 references, page 1 of 3

Xu, D., Wang, Y., Xiong, B., Li, T.. MEMS-based thermoelectric infrared sensors: A review. Front. Mech. Eng.. 2017; 12: 557-566 [OpenAIRE] [DOI]

Hettegger, M., Streibl, B., Biro, O., Neudorfer, H.. Measurements and Simulations of the Convective Heat Transfer Coefficients on the End Windings of an Electrical Machine. IEEE Trans. Ind. Electron.. 2012; 59: 2299-2308 [DOI]

Dijkstra, M., Lammerink, T., de Boer, M., Berenschot, E., Wiegerink, R., Elwenspoek, M.. Thermal Flow-Sensor Drift Reduction by Thermopile Voltage Cancellation via Power Feedback Control. IEEE J. Microelectromech. Syst.. 2014; 23: 908-917 [OpenAIRE] [DOI]

Has, U., Wassilew, D.. Temperature control for food in pots on cooking hobs. IEEE Trans. Ind. Electron.. 1999; 46: 1030-1034 [OpenAIRE] [DOI]

Singh, S., Yadav, M., Khandekar, S.. Measurement issues associated with surface mounting of thermopile heat flux sensors. Appl. Therm. Eng.. 2017; 114: 1105-1113 [OpenAIRE] [DOI]

Nam, S., Lee, Y., Lee, S.. Thermal characterization of a bio sample using a heat flux sensor-based multipurpose AC microcalorimeter. Appl. Therm. Eng.. 2016; 104: 193-202 [OpenAIRE] [DOI]

Lu, Y., Wang, Y., Ren, T.. Using Late Time Data Improves the Heat-Pulse Method for Estimating Soil Thermal Properties with the Pulsed Infinite Line Source Theory. Vadose Zone J.. 2013; 12 [OpenAIRE] [DOI]

Wolf, A., Hartmann, T., Bertolini, M., Schemberg, J., Grodrian, A., Lemke, K., Förster, T., Kessler, E., Hänschke, F., Mertens, F.. Toward high-throughput chip calorimetry by use of segmented-flow technology. Thermochim. Acta. 2015; 603: 172-183 [OpenAIRE] [DOI]

Krenger, R., Lehnert, T., Gijs, M.. Dynamic microfluidic nanocalorimetry system for measuring Caenorhabditis elegans metabolic heat. Lab Chip. 2018; 18: 1641-1651 [OpenAIRE] [PubMed] [DOI]

Grönroos, M., Nevalainen, T., Paasio, A.. Implementation of a Fast and Low-Power Thermopile Readout Circuit Arrangement for Array Processors. IEEE Trans. Circuits Syst. II Express Briefs. 2018; 65: 537-541 [OpenAIRE] [DOI]

Hubble, D., Diller, T.. A Hybrid Method for Measuring Heat Flux. J. Heat Transf.. 2009; 132: 031602 [OpenAIRE] [DOI]

Kumar, V., Shakher, C.. Study of heat dissipation process from heat sink using lensless Fourier transform digital holographic interferometry. Appl. Opt.. 2015; 54: 1257-1266 [OpenAIRE] [PubMed] [DOI]

Sajith, V., Sobhan, C.. Characterization of Heat Dissipation from a Microprocessor Chip Using Digital Interferometry. IEEE Trans. Compon. Packag. Manuf. Technol.. 2012; 2: 1298-1306 [OpenAIRE] [DOI]

Utkin, V.. Sliding Modes in Optimization and Control Problems. 1992

Chen, F., Li, X., Kraft, M.. Electromechanical Sigma-Delta Modulators (ΣΔM) Force Feedback Interfaces for Capacitive MEMS Inertial Sensors: A Review. IEEE Sens. J.. 2016; 16: 6476-6495 [DOI]

42 references, page 1 of 3
Abstract
This work presents a double sliding mode control designed for accelerating the measurement of heat fluxes using thermopiles. The slow transient response generated in the thermopile, when it is placed in contact with the surface to be measured, is due to the changes in the temperature distributions that this operation triggers. It is shown that under some conditions the proposed controls keep the temperature distribution of the whole system constant and that changes in the heat flux at the thermopile are almost instantaneously compensated by the controls. One-dimensional simulations and experimental results using a commercial thermopile, showing the goodness of t...
Subjects
free text keywords: Article, heat flux, thermopile, sliding mode control, sigma-delta, Electrical and Electronic Engineering, Analytical Chemistry, Atomic and Molecular Physics, and Optics, Biochemistry, :Enginyeria electrònica::Instrumentació i mesura::Sensors i actuadors [Àrees temàtiques de la UPC], Nanotechnology, Nanotecnologia, Chemical technology, TP1-1185, Acceleration, Transient response, Whole systems, Mechanics, Delta-sigma modulation, Physics, Flux (metallurgy)
42 references, page 1 of 3

Xu, D., Wang, Y., Xiong, B., Li, T.. MEMS-based thermoelectric infrared sensors: A review. Front. Mech. Eng.. 2017; 12: 557-566 [OpenAIRE] [DOI]

Hettegger, M., Streibl, B., Biro, O., Neudorfer, H.. Measurements and Simulations of the Convective Heat Transfer Coefficients on the End Windings of an Electrical Machine. IEEE Trans. Ind. Electron.. 2012; 59: 2299-2308 [DOI]

Dijkstra, M., Lammerink, T., de Boer, M., Berenschot, E., Wiegerink, R., Elwenspoek, M.. Thermal Flow-Sensor Drift Reduction by Thermopile Voltage Cancellation via Power Feedback Control. IEEE J. Microelectromech. Syst.. 2014; 23: 908-917 [OpenAIRE] [DOI]

Has, U., Wassilew, D.. Temperature control for food in pots on cooking hobs. IEEE Trans. Ind. Electron.. 1999; 46: 1030-1034 [OpenAIRE] [DOI]

Singh, S., Yadav, M., Khandekar, S.. Measurement issues associated with surface mounting of thermopile heat flux sensors. Appl. Therm. Eng.. 2017; 114: 1105-1113 [OpenAIRE] [DOI]

Nam, S., Lee, Y., Lee, S.. Thermal characterization of a bio sample using a heat flux sensor-based multipurpose AC microcalorimeter. Appl. Therm. Eng.. 2016; 104: 193-202 [OpenAIRE] [DOI]

Lu, Y., Wang, Y., Ren, T.. Using Late Time Data Improves the Heat-Pulse Method for Estimating Soil Thermal Properties with the Pulsed Infinite Line Source Theory. Vadose Zone J.. 2013; 12 [OpenAIRE] [DOI]

Wolf, A., Hartmann, T., Bertolini, M., Schemberg, J., Grodrian, A., Lemke, K., Förster, T., Kessler, E., Hänschke, F., Mertens, F.. Toward high-throughput chip calorimetry by use of segmented-flow technology. Thermochim. Acta. 2015; 603: 172-183 [OpenAIRE] [DOI]

Krenger, R., Lehnert, T., Gijs, M.. Dynamic microfluidic nanocalorimetry system for measuring Caenorhabditis elegans metabolic heat. Lab Chip. 2018; 18: 1641-1651 [OpenAIRE] [PubMed] [DOI]

Grönroos, M., Nevalainen, T., Paasio, A.. Implementation of a Fast and Low-Power Thermopile Readout Circuit Arrangement for Array Processors. IEEE Trans. Circuits Syst. II Express Briefs. 2018; 65: 537-541 [OpenAIRE] [DOI]

Hubble, D., Diller, T.. A Hybrid Method for Measuring Heat Flux. J. Heat Transf.. 2009; 132: 031602 [OpenAIRE] [DOI]

Kumar, V., Shakher, C.. Study of heat dissipation process from heat sink using lensless Fourier transform digital holographic interferometry. Appl. Opt.. 2015; 54: 1257-1266 [OpenAIRE] [PubMed] [DOI]

Sajith, V., Sobhan, C.. Characterization of Heat Dissipation from a Microprocessor Chip Using Digital Interferometry. IEEE Trans. Compon. Packag. Manuf. Technol.. 2012; 2: 1298-1306 [OpenAIRE] [DOI]

Utkin, V.. Sliding Modes in Optimization and Control Problems. 1992

Chen, F., Li, X., Kraft, M.. Electromechanical Sigma-Delta Modulators (ΣΔM) Force Feedback Interfaces for Capacitive MEMS Inertial Sensors: A Review. IEEE Sens. J.. 2016; 16: 6476-6495 [DOI]

42 references, page 1 of 3
Any information missing or wrong?Report an Issue