publication . Preprint . Article . 2019

NESSi: The Non-Equilibrium Systems Simulation package

Martin Eckstein; Michael Schüler; Michael Schüler; Philipp Werner; Denis Golež; Hugo U. R. Strand; Yuta Murakami; Yuta Murakami; Nikolaj Bittner; Andreas J. Herrmann;
Open Access English
  • Published: 30 Oct 2019
  • Country: Switzerland
Abstract
The nonequilibrium dynamics of correlated many-particle systems is of interest in connection with pump-probe experiments on molecular systems and solids, as well as theoretical investigations of transport properties and relaxation processes. Nonequilibrium Green's functions are a powerful tool to study interaction effects in quantum many-particle systems out of equilibrium, and to extract physically relevant information for the interpretation of experiments. We present the open-source software package NESSi (The Non-Equilibrium Systems Simulation package) which allows to perform many-body dynamics simulations based on Green's functions on the L-shaped Kadanoff-B...
Subjects
free text keywords: Computer Science - Computational Engineering, Finance, and Science, Hardware and Architecture, General Physics and Astronomy, Equations of motion, Systems simulation, Non-equilibrium thermodynamics, Python (programming language), computer.programming_language, computer, Discretization, Computer science, Perturbation theory (quantum mechanics), NeSSI, Feynman diagram, symbols.namesake, symbols, Statistical physics
Funded by
EC| DYNCORSYS
Project
DYNCORSYS
Real-time dynamics of correlated many-body systems
  • Funder: European Commission (EC)
  • Project Code: 278023
  • Funding stream: FP7 | SP2 | ERC
,
EC| UfastU
Project
UfastU
Theory of ultra-fast dynamics in correlated multi-band systems
  • Funder: European Commission (EC)
  • Project Code: 716648
  • Funding stream: H2020 | ERC | ERC-STG
,
EC| MODMAT
Project
MODMAT
Nonequilibrium dynamical mean-field theory: From models to materials
  • Funder: European Commission (EC)
  • Project Code: 724103
  • Funding stream: H2020 | ERC | ERC-COG
18 references, page 1 of 2

[1] A. J. Daley, C. Kollath, U. Schollwock, G. Vidal, Time-dependent densitymatrix renormalization-group using adaptive e ective hilbert spaces, J. Stat. Mech. Theor. Exp. 2004 (04) (2004) P04005. doi:10.1088/ 1742-5468/2004/04/p04005.

[2] S. R. White, A. E. Feiguin, Real-time evolution using the density matrix renormalization group, Phys. Rev. Lett. 93 (2004) 076401. doi:10.1103/ PhysRevLett.93.076401.

[4] G. D. Mahan, Many-Particle Physics, Plenum Press, New York, 1990.

[5] J. E. Gubernatis, N. Kawashima, P. Werner, Quantum Monte Carlo methods, Cambridge University Press, Cambridge, 2016.

[6] L. P. Kadano , G. Baym, Quantum Statistical Mechanics, W. A. Benjamin, New York, 1962.

[19] M. Puig von Friesen, C. Verdozzi, C.-O. Almbladh, Successes and failures of Kadano -Baym dynamics in Hubbard nanoclusters, Phys. Rev. Lett. 103 (2009) 176404. doi:10.1103/PhysRevLett.103.176404. [OpenAIRE]

[20] M. Puig von Friesen, C. Verdozzi, C.-O. Almbladh, Kadano -Baym dynamics of Hubbard clusters: Performance of many-body schemes, correlationinduced damping and multiple steady and quasi-steady states, Phys. Rev. B 82 (2010) 155108. doi:10.1103/PhysRevB.82.155108. [OpenAIRE]

[21] N. Schlunzen, M. Bonitz, Nonequilibrium Green functions approach to strongly correlated fermions in lattice systems, Contrib. Plasma Phys. 56 (1) (2016) 5{91. doi:10.1002/ctpp.201610003. [OpenAIRE]

[22] N. Schlunzen, J.-P. Joost, F. Heidrich-Meisner, M. Bonitz, Nonequilibrium dynamics in the one-dimensional Fermi-Hubbard model: Comparison of the nonequilibrium Green-functions approach and the density matrix renormalization group method, Phys. Rev. B 95 (2017) 165139. doi:10.1103/PhysRevB.95.165139. [OpenAIRE]

[23] W. Metzner, D. Vollhardt, Correlated lattice fermions in d = 1 dimensions, Phys. Rev. Lett. 62 (1989) 324{327. doi:10.1103/PhysRevLett.62.324. [OpenAIRE]

[24] A. Georges, G. Kotliar, W. Krauth, M. J. Rozenberg, Dynamical mean- eld theory of strongly correlated fermion systems and the limit of in nite dimensions, Rev. Mod. Phys. 68 (1996) 13{125. doi:10.1103/RevModPhys. 68.13.

[25] A. F. Kemper, M. A. Sentef, B. Moritz, J. K. Freericks, T. P. Devereaux, E ect of dynamical spectral weight redistribution on e ective interactions in time-resolved spectroscopy, Phys. Rev. B 90 (2014) 075126. doi:10. 1103/PhysRevB.90.075126. [OpenAIRE]

[26] M. A. Sentef, A. F. Kemper, A. Georges, C. Kollath, Theory of lightenhanced phonon-mediated superconductivity, Phys. Rev. B 93 (2016) 144506. doi:10.1103/PhysRevB.93.144506.

[27] Y. Murakami, P. Werner, N. Tsuji, H. Aoki, Interaction quench in the Holstein model: Thermalization crossover from electron- to phonon-dominated relaxation, Phys. Rev. B 91 (2015) 045128. doi:10.1103/PhysRevB.91. 045128.

[28] Y. Murakami, P. Werner, N. Tsuji, H. Aoki, Multiple amplitude modes in strongly coupled phonon-mediated superconductors, Phys. Rev. B 93 (2016) 094509. doi:10.1103/PhysRevB.93.094509.

18 references, page 1 of 2
Abstract
The nonequilibrium dynamics of correlated many-particle systems is of interest in connection with pump-probe experiments on molecular systems and solids, as well as theoretical investigations of transport properties and relaxation processes. Nonequilibrium Green's functions are a powerful tool to study interaction effects in quantum many-particle systems out of equilibrium, and to extract physically relevant information for the interpretation of experiments. We present the open-source software package NESSi (The Non-Equilibrium Systems Simulation package) which allows to perform many-body dynamics simulations based on Green's functions on the L-shaped Kadanoff-B...
Subjects
free text keywords: Computer Science - Computational Engineering, Finance, and Science, Hardware and Architecture, General Physics and Astronomy, Equations of motion, Systems simulation, Non-equilibrium thermodynamics, Python (programming language), computer.programming_language, computer, Discretization, Computer science, Perturbation theory (quantum mechanics), NeSSI, Feynman diagram, symbols.namesake, symbols, Statistical physics
Funded by
EC| DYNCORSYS
Project
DYNCORSYS
Real-time dynamics of correlated many-body systems
  • Funder: European Commission (EC)
  • Project Code: 278023
  • Funding stream: FP7 | SP2 | ERC
,
EC| UfastU
Project
UfastU
Theory of ultra-fast dynamics in correlated multi-band systems
  • Funder: European Commission (EC)
  • Project Code: 716648
  • Funding stream: H2020 | ERC | ERC-STG
,
EC| MODMAT
Project
MODMAT
Nonequilibrium dynamical mean-field theory: From models to materials
  • Funder: European Commission (EC)
  • Project Code: 724103
  • Funding stream: H2020 | ERC | ERC-COG
18 references, page 1 of 2

[1] A. J. Daley, C. Kollath, U. Schollwock, G. Vidal, Time-dependent densitymatrix renormalization-group using adaptive e ective hilbert spaces, J. Stat. Mech. Theor. Exp. 2004 (04) (2004) P04005. doi:10.1088/ 1742-5468/2004/04/p04005.

[2] S. R. White, A. E. Feiguin, Real-time evolution using the density matrix renormalization group, Phys. Rev. Lett. 93 (2004) 076401. doi:10.1103/ PhysRevLett.93.076401.

[4] G. D. Mahan, Many-Particle Physics, Plenum Press, New York, 1990.

[5] J. E. Gubernatis, N. Kawashima, P. Werner, Quantum Monte Carlo methods, Cambridge University Press, Cambridge, 2016.

[6] L. P. Kadano , G. Baym, Quantum Statistical Mechanics, W. A. Benjamin, New York, 1962.

[19] M. Puig von Friesen, C. Verdozzi, C.-O. Almbladh, Successes and failures of Kadano -Baym dynamics in Hubbard nanoclusters, Phys. Rev. Lett. 103 (2009) 176404. doi:10.1103/PhysRevLett.103.176404. [OpenAIRE]

[20] M. Puig von Friesen, C. Verdozzi, C.-O. Almbladh, Kadano -Baym dynamics of Hubbard clusters: Performance of many-body schemes, correlationinduced damping and multiple steady and quasi-steady states, Phys. Rev. B 82 (2010) 155108. doi:10.1103/PhysRevB.82.155108. [OpenAIRE]

[21] N. Schlunzen, M. Bonitz, Nonequilibrium Green functions approach to strongly correlated fermions in lattice systems, Contrib. Plasma Phys. 56 (1) (2016) 5{91. doi:10.1002/ctpp.201610003. [OpenAIRE]

[22] N. Schlunzen, J.-P. Joost, F. Heidrich-Meisner, M. Bonitz, Nonequilibrium dynamics in the one-dimensional Fermi-Hubbard model: Comparison of the nonequilibrium Green-functions approach and the density matrix renormalization group method, Phys. Rev. B 95 (2017) 165139. doi:10.1103/PhysRevB.95.165139. [OpenAIRE]

[23] W. Metzner, D. Vollhardt, Correlated lattice fermions in d = 1 dimensions, Phys. Rev. Lett. 62 (1989) 324{327. doi:10.1103/PhysRevLett.62.324. [OpenAIRE]

[24] A. Georges, G. Kotliar, W. Krauth, M. J. Rozenberg, Dynamical mean- eld theory of strongly correlated fermion systems and the limit of in nite dimensions, Rev. Mod. Phys. 68 (1996) 13{125. doi:10.1103/RevModPhys. 68.13.

[25] A. F. Kemper, M. A. Sentef, B. Moritz, J. K. Freericks, T. P. Devereaux, E ect of dynamical spectral weight redistribution on e ective interactions in time-resolved spectroscopy, Phys. Rev. B 90 (2014) 075126. doi:10. 1103/PhysRevB.90.075126. [OpenAIRE]

[26] M. A. Sentef, A. F. Kemper, A. Georges, C. Kollath, Theory of lightenhanced phonon-mediated superconductivity, Phys. Rev. B 93 (2016) 144506. doi:10.1103/PhysRevB.93.144506.

[27] Y. Murakami, P. Werner, N. Tsuji, H. Aoki, Interaction quench in the Holstein model: Thermalization crossover from electron- to phonon-dominated relaxation, Phys. Rev. B 91 (2015) 045128. doi:10.1103/PhysRevB.91. 045128.

[28] Y. Murakami, P. Werner, N. Tsuji, H. Aoki, Multiple amplitude modes in strongly coupled phonon-mediated superconductors, Phys. Rev. B 93 (2016) 094509. doi:10.1103/PhysRevB.93.094509.

18 references, page 1 of 2
Any information missing or wrong?Report an Issue