# Synthesis of quantum-logic circuits

- Published: 01 Jun 2006
- Publisher: Institute of Electrical and Electronics Engineers (IEEE)

- Michigan Virtual University United States

[3] A. Barenco, C. Bennett, R. Cleve, D.P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J.A. Smolin, and H. Weinfurter, Elementary gates for quantum computation. Phys. Rev. A, 52:3457, 1995.

[4] C. H. Bennett and G. Brassard. Quantum cryptography: Public-key distribution and coin tossing. In Proceedings of IEEE International Conference on Computers, Systems, and Signal Processing, page 175179, Bangalore, India, 1984. IEEE Press.

[5] G.K. Brennen, D. Song, and C.J. Williams, Quantum-computer architecture using nonlocal interactions. Phys. Rev. A.(R), 67:050302, 2003. [OpenAIRE]

[6] S.S. Bullock, Note on the Khaneja Glaser decomposition. Quant. Info. and Comp. 4:396, 2004.

[7] S. S. Bullock and I. L. Markov. An elementary two-qubit quantum computation in twenty-three elementary gates. In Proceedings of the 40th ACM/IEEE Design Automation Conference, pages 324- 329, Anaheim, CA, June 2003. Journal: Phys. Rev. A 68:012318, 2003.

[8] S. S. Bullock and I. L. Markov, Smaller circuits for arbitrary n-qubit diagonal computations. Quant. Info. and Comp. 4:27, 2004.

[9] G. Cybenko: “Reducing Quantum Computations to Elementary Unitary Operations”, Comp. in Sci. and Engin., March/April 2001, pp. 27-32.

[10] D. Deutsch, Quantum Computational Networks, Proc. R. Soc. London A 425:73, 1989.

[11] D. Deutsch, A. Barenco, A. Ekert, Universality in quantum computation. Proc. R. Soc. London A 449:669, 1995. [OpenAIRE]

[12] D. P. DiVincenzo. Two-bit gates are universal for quantum computation. Phys. Rev. A 15:1015, 1995. [OpenAIRE]

[13] R. P. Feynman. Quantum mechanical computers. Found. Phys., 16:507-531, 1986.

[14] A. G. Fowler, S. J. Devitt, L. C. L. Hollenberg, “Implementation of Shor's Algorithm on a Linear Nearest Neighbour Qubit Array”, Quant. Info. Comput. 4, 237-251 (2004).

[15] G.H. Golub and C. vanLoan, Matrix Computations, Johns Hopkins Press, 1989.

[16] L. K. Grover. Quantum mechanics helps with searching for a needle in a haystack. Phys. Rev. Let., 79:325, 1997.

[17] W. N. N. Hung, X. Song, G. Yang, J. Yang, and M. Perkowski. Quantum logic synthesis by symbolic reachability analysis. In Proceedings of the 41st Design Automation Conference, San Diego, CA, June 2004.