publication . Preprint . Other literature type . Article . 2007

Finite Element simulation of radiation losses in photonic crystal fibers

Jan Pomplun; Lin Zschiedrich; Roland Klose; Frank Schmidt; Sven Burger;
Open Access English
  • Published: 14 Nov 2007
Abstract
In our work we focus on the accurate computation of light propagation in finite size photonic crystal structures with the finite element method (FEM). We discuss how we utilize numerical concepts like high-order finite elements, transparent boundary conditions and goal-oriented error estimators for adaptive grid refinement in order to compute radiation leakage in photonic crystal fibers and waveguides. Due to the fast convergence of our method we can use it e.g. to optimize the design of photonic crystal structures with respect to geometrical parameters, to minimize radiation losses and to compute attenutation spectra for different geometries. (© 2007 WILEY-VCH ...
Subjects
arXiv: Physics::Optics
free text keywords: Physics - Optics, Optoelectronics, business.industry, business, Photonic-crystal fiber, Materials science, Finite element simulation, Radiation, Electrical and Electronic Engineering, Materials Chemistry, Electronic, Optical and Magnetic Materials, Surfaces, Coatings and Films, Surfaces and Interfaces, Condensed Matter Physics, Maxwell's equations, symbols.namesake, symbols, Optical fiber, law.invention, law, Optics, Nanophotonics, Physics, Boundary value problem, Waveguide, Finite element method, Photonic crystal
Related Organizations
22 references, page 1 of 2

[1] J. D. Joannopoulos, R. D. Meade, and J. N. Winn. Photonic crystals: molding the flow of light. Princeton University Press, 1. edition, 1995.

[2] R.F. Cregan, B. J. Mangan, J.C. Knight, P. St. J. Russel, P. J. Roberts, and D.C. Allan. Single-mode photonic band gap guidance of light in air. Science, 285(5433):1537-1539, 1999. [OpenAIRE]

[3] P. St. J. Russell. Photonic crystal fibers. Science, 299(5605):358-362, 2003.

[4] F. Benabid, J. C. Knight, G. Antonopoulos, and P. St. J. Russel. Stimulated raman scattering in hydrogen-filled hollow-core photonic crystal fibers. Science, 298(5592):399-402, 2002. [OpenAIRE]

[5] F. Couny, F. Benabid, and P.S. Light. Large-pitch kagome structured hollow-core photonic crystal fiber. Optics Letters, 31(24):3574-3576, 2006. [OpenAIRE]

[6] J. Pomplun, R. Holzlo¨hner, S. Burger, L. Zschiedrich, and F. Schmidt. FEM investigation of leaky modes in hollow core photonic crystal fibers. volume 6480, page 64800M. Proc. SPIE, 2007. [OpenAIRE]

[7] P. Bienstman, S. Selleri, and L. Rosa. Modelling lossy photonics wires: a mode solver comparison. page 5. Proc. OWTNM 05, 2006.

[8] S. Burger, R. Klose, A. Scha¨dle, and F. Schmidt and L. Zschiedrich. FEM modelling of 3D photonic crystals and photonic crystal waveguides. In Y. Sidorin and C. A. Wa¨chter, editors, Integrated Optics: Devices, Materials, and Technologies IX, volume 5728, pages 164-173. Proc. SPIE, 2005.

[9] S. Burger, R. Klose, A. Scha¨dle, F. Schmidt, and L. Zschiedrich. Adaptive FEM solver for the computation of electromagnetic eigenmodes in 3d photonic crystal structures. In A. M. Anile, G. Ali, and G. Mascali, editors, Scientific Computing in Electrical Engineering, pages 169-175. Springer Verlag, 2006.

[10] S. Burger, L. Zschiedrich, R. Klose, A. Scha¨dle, F. Schmidt, C. Enkrich, S. Linden, M. Wegener, and C. M. Soukoulis. Numerical investigation of light scattering off split-ring resonators. In T. Szoplik, E. O¨ zbay, C. M. Soukoulis, and N. I. Zheludev, editors, Metamaterials, volume 5955, pages 18-26. Proc. SPIE, 2005. [OpenAIRE]

[11] C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, C. Zhou, T. Koschny, and C. M. Soukoulis. Magnetic metamaterials at telecommunication and visible frequencies. Phys. Rev. Lett., 95:203901, 2005. [OpenAIRE]

[12] R. Holzlo¨hner, S. Burger, P. J. Roberts, and J. Pomplun. Efficient optimization of hollow-core photonic crystal fiber design using the finite-element method. Journal of the European Optical Society, 1(06011), 2006.

[13] T. Kalkbrenner, U. Ha˚kanson, A. Scha¨dle, S. Burger, C. Henkel, and V. Sandoghdar. Optical microscopy using the spectral modifications of a nano-antenna. Phys. Rev. Lett., 95:200801, 2005. [OpenAIRE]

[14] S. Linden, C. Enkrich, G. Dolling, M. W. Klein, J. Zhou, T. Koschny, C. M. Soukoulis, S. Burger, F. Schmidt, , and M. Wegener. Photonic metamaterials: Magnetism at optical frequencies. IEEE Journal of Selected Topics in Quantum Electronics, 12:1097-1105, 2006.

[15] L. Zschiedrich, S. Burger, J. Pomplun, and F. Schmidt. Goal Oriented Adaptive Finite Element Method for the Precise Simulation of Optical Components. volume 6475, page 64750H. Proc. SPIE, 2007. [OpenAIRE]

22 references, page 1 of 2
Powered by OpenAIRE Research Graph
Any information missing or wrong?Report an Issue