publication . Article . Other literature type . 2016

Development of mirror coatings for gravitational-wave detectors

Reid, Stuart; Martin, Iain;
Open Access English
  • Published: 16 Nov 2016 Journal: Coatings (issn: 2079-6412, Copyright policy)
  • Publisher: MDPI AG
  • Country: United Kingdom
Abstract
Gravitational waves are detected by measuring length\ud changes between mirrors in the arms of kilometrelong\ud Michelson interferometers. Brownian thermal\ud noise arising from thermal vibrations of the mirrors\ud can limit the sensitivity to distance changes between\ud the mirrors, and, therefore, the ability to measure\ud gravitational-wave signals. Thermal noise arising\ud from the highly reflective mirror coatings will limit\ud the sensitivity both of current detectors (when they\ud reach design performance) and of planned future\ud detectors. Therefore, the development of coatings with\ud low thermal noise, which at the same time meet\ud strict optical req...
Subjects
free text keywords: gravitational waves, optical coatings, 1064 nm, ion beam deposition, molecular beam epitaxy, Engineering (General). Civil engineering (General), TA1-2040, Articles, General Engineering, General Physics and Astronomy, General Mathematics, Thermal, Noise (electronics), Gravitational wave, Physics, Optics, business.industry, business, Vibration, Detector, Astronomical interferometer, Classical mechanics, Brownian motion, Universe, media_common.quotation_subject, media_common, GW151226, Black hole, Gravitational-wave observatory
Related Organizations
Funded by
RCUK| Investigations in Gravitational Radiation
Project
  • Funder: Research Council UK (RCUK)
  • Project Code: ST/L000946/1
  • Funding stream: STFC
Download fromView all 9 versions
Coatings
Article . 2016
Europe PubMed Central
Other literature type . 2018
Coatings
Article
Provider: UnpayWall
Coatings
Article . 2016
Provider: Crossref
85 references, page 1 of 6

1. Einstein, A. Die Grundlage der allgemeinen Relativitätstheorie. Ann. Phys. 1916, 354, 769-822. (In German) [CrossRef]

2. The LIGO Scientific Collaboration. Advanced LIGO. Class. Quantum Gravity 2015, 32, 074001.

3. Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abernathy, M.R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; et al. Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 2016, 116, 061102. [CrossRef] [PubMed]

4. Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abernathy, M.R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; et al. GW151226: Observation of gravitational waves from a 22-solar-mass binary black hole coalescence. Phys. Rev. Lett. 2016, 116, 241103. [CrossRef] [PubMed]

5. Pitkin, M.; Reid, S.; Rowan, S.; Hough, J. Gravitational wave detection by interferometry (ground and space). Living Rev. Relativ. 2011, 14, 13-20. [CrossRef] [OpenAIRE]

6. Edelstein, W.A.; Hough, J.; Pugh, J.R.; Martin, W. Limits to the measurement of displacement in an interferometric gravitational radiation detector. J. Phys. E Sci. Instrum. 1978, 11, 895-897. [CrossRef]

7. Gustafson, E.K.; Shoemaker, D.; Strain, K.; Weiss, R. LSC White Paper on Detector Research and Development, LIGO T990080-00-D. Available online: https://dcc.ligo.org/T990080/public (accessed on 18 August 2016).

8. Ueda, A.; Uehara, N.; Uchisawa, K.; Ueda, K.; Sekiguchi, H.; Mitake, T.; Nakamura, K.; Kitajima, N.; Kataoka, I. Ultra-High Quality Cavity with 1.5 ppm Loss at 1064 nm. Opt. Rev. 1996, 3, 369-372. [CrossRef]

9. Rafac, R.J.; Young, B.C.; Beall, J.A.; Itano, W.M.; Wineland, D.J.; Bergquist, J.C. Sub-dekahertz ultraviolet spectroscopy of 199Hg+. Phys. Rev. Lett. 2000, 85, 2462-2465. [CrossRef] [PubMed] [OpenAIRE]

10. Ludlow, A.D.; Huang, X.; Notcutt, M.; Zanon-Willette, T.; Foreman, S.M.; Boyd, M.M.; Blatt, S.; Ye, J. Compact, thermal-noise-limited optical cavity for diode laser stabilization at 1 1015. Opt. Lett. 2007, 32, 641-643. [CrossRef] [PubMed]

11. Webster, S.A.; Oxborrow, M.; Pugla, S.; Millo, J.; Gill, P. Thermal-noise limited optical cavity. Phys. Rev. A 2008, 77, 033847. [CrossRef] [OpenAIRE]

12. Schmidt-Kaler, F.; Gulde, S.; Riebe, M.; Deuschle, T.; Kreuter, A.; Lancaster, G.; Becher, C.; Eschner, J.; Häffner, H.; Blatt, R. The coherence of qubits based on single Ca+ ions. J. Phys. B At. Mol. Opt. Phys. 2003, 36, 623-636. [CrossRef]

13. Miller, R.; Northup, T.E.; Birnbaum, K.M.; Boca, A.; Boozer, A.D.; Kimble, H.J. Trapped atoms in cavity QED: Coupling quantized light and matter. J. Phys. B At. Mol. Opt. Phys. 2005, 38, S551. [CrossRef] [OpenAIRE]

14. Abramovici, A.; Althouse, W.; Camp, J.; Durance, D.; Giaime, J.A.; Gillespie, A.; Kawamura, S.; Kuhnert, A.; Lyons, T.; Raab, F.J.; et al. Improved sensitivity in a gravitational wave interferometer and implications for LIGO. Phys. Lett. A 1996, 218, 157-163. [CrossRef] [OpenAIRE]

15. Lück, H.; The GEO 600 Collaboration. Status of the GEO 600 detector. Class. Quantum Gravity 2006, 23, S71-S78.

85 references, page 1 of 6
Abstract
Gravitational waves are detected by measuring length\ud changes between mirrors in the arms of kilometrelong\ud Michelson interferometers. Brownian thermal\ud noise arising from thermal vibrations of the mirrors\ud can limit the sensitivity to distance changes between\ud the mirrors, and, therefore, the ability to measure\ud gravitational-wave signals. Thermal noise arising\ud from the highly reflective mirror coatings will limit\ud the sensitivity both of current detectors (when they\ud reach design performance) and of planned future\ud detectors. Therefore, the development of coatings with\ud low thermal noise, which at the same time meet\ud strict optical req...
Subjects
free text keywords: gravitational waves, optical coatings, 1064 nm, ion beam deposition, molecular beam epitaxy, Engineering (General). Civil engineering (General), TA1-2040, Articles, General Engineering, General Physics and Astronomy, General Mathematics, Thermal, Noise (electronics), Gravitational wave, Physics, Optics, business.industry, business, Vibration, Detector, Astronomical interferometer, Classical mechanics, Brownian motion, Universe, media_common.quotation_subject, media_common, GW151226, Black hole, Gravitational-wave observatory
Related Organizations
Funded by
RCUK| Investigations in Gravitational Radiation
Project
  • Funder: Research Council UK (RCUK)
  • Project Code: ST/L000946/1
  • Funding stream: STFC
Download fromView all 9 versions
Coatings
Article . 2016
Europe PubMed Central
Other literature type . 2018
Coatings
Article
Provider: UnpayWall
Coatings
Article . 2016
Provider: Crossref
85 references, page 1 of 6

1. Einstein, A. Die Grundlage der allgemeinen Relativitätstheorie. Ann. Phys. 1916, 354, 769-822. (In German) [CrossRef]

2. The LIGO Scientific Collaboration. Advanced LIGO. Class. Quantum Gravity 2015, 32, 074001.

3. Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abernathy, M.R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; et al. Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 2016, 116, 061102. [CrossRef] [PubMed]

4. Abbott, B.P.; Abbott, R.; Abbott, T.D.; Abernathy, M.R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; et al. GW151226: Observation of gravitational waves from a 22-solar-mass binary black hole coalescence. Phys. Rev. Lett. 2016, 116, 241103. [CrossRef] [PubMed]

5. Pitkin, M.; Reid, S.; Rowan, S.; Hough, J. Gravitational wave detection by interferometry (ground and space). Living Rev. Relativ. 2011, 14, 13-20. [CrossRef] [OpenAIRE]

6. Edelstein, W.A.; Hough, J.; Pugh, J.R.; Martin, W. Limits to the measurement of displacement in an interferometric gravitational radiation detector. J. Phys. E Sci. Instrum. 1978, 11, 895-897. [CrossRef]

7. Gustafson, E.K.; Shoemaker, D.; Strain, K.; Weiss, R. LSC White Paper on Detector Research and Development, LIGO T990080-00-D. Available online: https://dcc.ligo.org/T990080/public (accessed on 18 August 2016).

8. Ueda, A.; Uehara, N.; Uchisawa, K.; Ueda, K.; Sekiguchi, H.; Mitake, T.; Nakamura, K.; Kitajima, N.; Kataoka, I. Ultra-High Quality Cavity with 1.5 ppm Loss at 1064 nm. Opt. Rev. 1996, 3, 369-372. [CrossRef]

9. Rafac, R.J.; Young, B.C.; Beall, J.A.; Itano, W.M.; Wineland, D.J.; Bergquist, J.C. Sub-dekahertz ultraviolet spectroscopy of 199Hg+. Phys. Rev. Lett. 2000, 85, 2462-2465. [CrossRef] [PubMed] [OpenAIRE]

10. Ludlow, A.D.; Huang, X.; Notcutt, M.; Zanon-Willette, T.; Foreman, S.M.; Boyd, M.M.; Blatt, S.; Ye, J. Compact, thermal-noise-limited optical cavity for diode laser stabilization at 1 1015. Opt. Lett. 2007, 32, 641-643. [CrossRef] [PubMed]

11. Webster, S.A.; Oxborrow, M.; Pugla, S.; Millo, J.; Gill, P. Thermal-noise limited optical cavity. Phys. Rev. A 2008, 77, 033847. [CrossRef] [OpenAIRE]

12. Schmidt-Kaler, F.; Gulde, S.; Riebe, M.; Deuschle, T.; Kreuter, A.; Lancaster, G.; Becher, C.; Eschner, J.; Häffner, H.; Blatt, R. The coherence of qubits based on single Ca+ ions. J. Phys. B At. Mol. Opt. Phys. 2003, 36, 623-636. [CrossRef]

13. Miller, R.; Northup, T.E.; Birnbaum, K.M.; Boca, A.; Boozer, A.D.; Kimble, H.J. Trapped atoms in cavity QED: Coupling quantized light and matter. J. Phys. B At. Mol. Opt. Phys. 2005, 38, S551. [CrossRef] [OpenAIRE]

14. Abramovici, A.; Althouse, W.; Camp, J.; Durance, D.; Giaime, J.A.; Gillespie, A.; Kawamura, S.; Kuhnert, A.; Lyons, T.; Raab, F.J.; et al. Improved sensitivity in a gravitational wave interferometer and implications for LIGO. Phys. Lett. A 1996, 218, 157-163. [CrossRef] [OpenAIRE]

15. Lück, H.; The GEO 600 Collaboration. Status of the GEO 600 detector. Class. Quantum Gravity 2006, 23, S71-S78.

85 references, page 1 of 6
Powered by OpenAIRE Open Research Graph
Any information missing or wrong?Report an Issue
publication . Article . Other literature type . 2016

Development of mirror coatings for gravitational-wave detectors

Reid, Stuart; Martin, Iain;