publication . Article . Other literature type . 2015

Control Capabilities of Myoelectric Robotic Prostheses by Hand Amputees: A Scientific Research and Market Overview

Manfredo Atzori; Henning Müller;
Open Access English
  • Published: 01 Nov 2015 Journal: Frontiers in Systems Neuroscience, volume 9 (issn: 1662-5137, Copyright policy)
  • Publisher: Frontiers Media S.A.
  • Country: Switzerland
Abstract
Hand amputation can dramatically affect the capabilities of a person. Cortical reorganization occurs in the brain, but the motor and somatosensorial cortex can interact with the remnant muscles of the missing hand even many years after the amputation, leading to the possibility to restore the capabilities of hand amputees through myoelectric prostheses. Myoelectric hand prostheses with many degrees of freedom are commercially available and recent advances in rehabilitation robotics suggest that their natural control can be performed in real life. The first commercial products exploiting pattern recognition to recognize the movements have recently been released, ...
Persistent Identifiers
Subjects
free text keywords: Neuroscience, electromyography, prosthetics, rehabilitation robotics, machine learning, Review, Informatique, machine learning applied to neuroscience, electromyography (EMG), Simulation, Hand amputation, Robotics, In real life, Artificial intelligence, business.industry, business, Everyday life, Missing hand, Natural control, Scientific method, Human–computer interaction, Computer science, lcsh:Neurosciences. Biological psychiatry. Neuropsychiatry, lcsh:RC321-571
55 references, page 1 of 4

AbdelMaseeh M.Chen T.-W.Stashuk D. (2015). Extraction and classification of multichannel electromyographic activation trajectories for hand movement recognition. IEEE Trans. Neural Syst. Rehabil. Eng. [Epub ahead of print]. 10.1109/tnsre.2015.2447217 26099148 [OpenAIRE] [PubMed] [DOI]

Ameri A.Kamavuako E. N.Scheme E. J.Englehart K. B.Parker P. A. (2014a). Real-time, simultaneous Myoelectric control using visual target-based training paradigm. Biomed. Signal Process. Control 13, 8–14. 10.1016/j.bspc.2014.03.006 [OpenAIRE] [DOI]

Ameri A.Kamavuako E. N.Scheme E. J.Englehart K. B.Parker P. (2014b). Support vector regression for improved real-time, simultaneous Myoelectric control. IEEE Trans. Neural Syst. Rehabil. Eng. 22, 1198–1209. 10.1109/TNSRE.2014.2323576 24846649 [OpenAIRE] [PubMed] [DOI]

Antuvan C. W.Ison M.Artemiadis P. (2014). Embedded human control of robots using Myoelectric interfaces. IEEE Trans. Neural Syst. Rehabil. Eng. 22, 820–827. 10.1109/TNSRE.2014.2302212 24760 930 [OpenAIRE] [PubMed] [DOI]

Aszmann O. C.Roche A. D.Salminger S.Paternostro-Sluga T.Herceg M.Sturma A.. (2015). Bionic reconstruction to restore hand function after brachial plexus injury: a case series of three patients. Lancet 385, 2183–2189. 10.1016/s0140-6736(14)61776-1 25724529 [OpenAIRE] [PubMed] [DOI]

Atkins D. J.Heard D. C. Y.Donovan W. H. (1996). Epidemiologic overview of individuals with upper-limb loss and their reported research priorities. J. Prosthet. Orthot. 8, 2–11. 10.1097/00008526-199600810-00003 [OpenAIRE] [DOI]

Atzori M.Gijsberts A.Castellini C.Caputo B.Hager A.-G. M.Elsig S.. (2014a). Electromyography data for non-invasive naturally-controlled Robotic hand prostheses. Sci. Data 1:140053. 10.1038/sdata.2014.53 25977804 [OpenAIRE] [PubMed] [DOI]

Atzori M.Gijsberts A.Müller H.Caputo B. (2014b). Classification of hand movements in amputated subjects by sEMG and accelerometers, in Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (Chicago, IL: IEEE), 3545–3549. [OpenAIRE]

Atzori M.Gijsberts A.Castellini C.Caputo B.Mittaz Hager A.-G.Elsig S. (in press). Clinical parameter effect on the capability to control Myoelectric Robotic pros thetic hands. J. Rehabil. Res. Dev. [Epub ahead of print].

Atzori M.Gijsberts A.Kuzborskij I.Elsig S.Mittaz Hager A.-G.Deriaz O.. (2015). Characterization of a benchmark database for Myoelectric movement classification. IEEE Trans. Neural Syst. Rehabil. Eng.23, 73–83. 10.1109/TNSRE.2014.2328495 25486646 [PubMed] [DOI]

Belter J. T.Segil J. L.Dollar A. M.Weir R. F. (2013). Mechanical design and performance specifications of anthropomorphic prosthetic hands: a review. J. Rehabil. Res. Dev. 50, 599–618. 10.1682/jrrd.2011.10.0188 24013909 [OpenAIRE] [PubMed] [DOI]

Castel lini C.Fiorilla A. E.Sandini G. (2009a). Multi-subject/daily-life activity EMG-based control of mechanical hands. J. Neuroeng. Rehabil. 6:41. 10.1186/1743-0003-6-41 19919710 [OpenAIRE] [PubMed] [DOI]

Castellini C.Gruppioni E.Davalli A.Sandini G. (2009b). Fine detection of grasp force and posture by amputees via surface electromyography. J. Physiol. Paris 103, 255–262. 10.1016/j.jphysparis.2009.08.008 19665563 [OpenAIRE] [PubMed] [DOI]

Cipriani C.Antfolk C.Controzzi M.Lundborg G.Rosen B.Carrozza M. C.. (2011). Online Myoelectric control of a dexterous hand prosthesis by transradial amput ees. IEEE Trans. Neural Syst. Rehabil. Eng.19, 260–270. 10.1109/TNSRE.2011.2108667 21292599 [PubMed] [DOI]

De Luca C. J. (1997). The use of surface electromyography in biomechanics. J. Appl. Biomech. 13, 135–163.

55 references, page 1 of 4
Any information missing or wrong?Report an Issue