publication . Article . Other literature type . Preprint . 2001

A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem

Daniel Preda; Andrew Lundgren; Jeffrey Goldstone; Sam Gutmann; Joshua Lapan; Edward Farhi;
Open Access
  • Published: 20 Apr 2001 Journal: Science, volume 292, pages 472-475 (issn: 0036-8075, eissn: 1095-9203, Copyright policy)
  • Publisher: American Association for the Advancement of Science (AAAS)
Abstract
A quantum system will stay near its instantaneous ground state if the Hamiltonian that governs its evolution varies slowly enough. This quantum adiabatic behavior is the basis of a new class of algorithms for quantum computing. We test one such algorithm by applying it to randomly generated, hard, instances of an NP-complete problem. For the small examples that we can simulate, the quantum adiabatic algorithm works well, and provides evidence that quantum computers (if large ones can be built) may be able to outperform ordinary computers on hard sets of instances of NP-complete problems.
Subjects
ACM Computing Classification System: ComputerSystemsOrganization_MISCELLANEOUS
free text keywords: Multidisciplinary, Quantum Physics, Algorithm, Quantum computer, Quantum algorithm, Quantum network, Quantum phase estimation algorithm, Quantum error correction, Quantum process, Quantum information, Adiabatic quantum computation
Related Organizations

[1] P.W. Shor, SIAM J. Comput. 26(5), 1484 (1997).

[2] D.S. Johnson and C.H. Papadimitriou, “Computational Complexity”, in The Traveling Salesman Problem, E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooykan, D.B. Shmays, eds. (John Wiley & Sons, 1985), p. 37.

[3] E. Farhi, J. Goldstone, S. Gutmann, M. Sipser, “Quantum Computation by Adiabatic Evolution”, quant-ph/0001106.

[4] T. Kadowaki and H. Nishimori, “Quantum Annealing in the Transverse Ising Model”, cond-mat/9804280; Phys. Rev. E 58(5), 5355 (1998). [OpenAIRE]

[5] J. Brooke, D. Bitko, T.F. Rosenbaum, and G. Aeppli, “Quantum Annealing of a Disordered Magnet”, Science 284, 779 (1999). [OpenAIRE]

[6] E. Farhi, J. Goldstone, S. Gutmann, “A Numerical Study of the Performance of a Quantum Adiabatic Evolution Algorithm for Satisfiability”, quant-ph/0007071.

[7] D.G. Mitchell, B. Selman, and H.J. Levesque, in Proc. 10th Natl. Conf. Artif. Intell. (AAAI-92), 459 (1992).

[8] E. Friedgut and J. Bourgain, “Sharp Thresholds of Graph Properties and the k-SAT Problem”, J. Am. Math. Soc. 12, 1017 (1999). [OpenAIRE]

[9] S. Kirkpatrick and B. Selman, Science 264, 1297 (1994).

[10] B. Selman, H.J. Levesque, and D.G. Mitchell, in Proc. 10th Natl. Conf. Artif. Intell. (AAAI-92), 440 (1992).

[11] L.K. Grover, “A Fast Quantum Mechanical Algorithm for Database Search”, quantph/9605043; Phys. Rev. Lett. 78, 325 (1997).

[12] E. Farhi and S. Gutmann, “An Analog Analogue of a Digital Quantum Computation”, quant-ph/9612026, Phys. Rev. A 57, 2403 (1998); C.H. Bennett, E. Bernstein, G. Brassard, and U.V. Vazirani, quant-ph/9701001.

[13] A.M. Childs, E. Farhi, J. Goldstone, and S. Gutmann, “Finding Cliques by Quantum Adiabatic Evolution”, quant-ph/0012104, submitted to Algorithmica.

Any information missing or wrong?Report an Issue