publication . Article . 2018

Developmental Trajectory of Infant Brain Signal Variability: A Longitudinal Pilot Study

Chiaki Hasegawa; Tetsuya Takahashi; Yuko Yoshimura; Yuko Yoshimura; Sou Nobukawa; Takashi Ikeda; Daisuke N. Saito; Hirokazu Kumazaki; Yoshio Minabe; Mitsuru Kikuchi;
Open Access
  • Published: 01 Aug 2018 Journal: Frontiers in Neuroscience, volume 12 (eissn: 1662-453X, Copyright policy)
  • Publisher: Frontiers Media SA
Abstract
The infant brain shows rapid neural network development that considerably influences cognitive and behavioral abilities in later life. Reportedly, this neural development process can be indexed by estimating neural signal complexity. However, the precise developmental trajectory of brain signal complexity during infancy remains elusive. This study was conducted to ascertain the trajectory of magnetoencephalography (MEG) signal complexity from 2 months to 3 years of age in 5 infants using multiscale entropy, which captures signal complexity at multiple temporal scales. Analyses revealed scale-dependent developmental trajectories. Specifically, signal complexity p...
Subjects
free text keywords: Neural development, Temporal scales, Artificial neural network, Multiscale entropy, Psychology, Neuroscience, Cognition, Magnetoencephalography, medicine.diagnostic_test, medicine, Sample size determination, Trajectory, Perspective, infant development, magnetoencephalography (MEG), complexity, longitudinal change, Neurosciences. Biological psychiatry. Neuropsychiatry, RC321-571
29 references, page 1 of 2

Bolton P. F.Golding J.Emond A.Steer C. D. (2012). Autism spectrum disorder and autistic traits in the avon longitudinal study of parents and children: precursors and early signs. J. Am. Acad. Child Adolesc. Psychiatry 51 249 e25–260 e25. 10.1016/j.jaac.2011.12.009 22365461 [OpenAIRE] [PubMed] [DOI]

Bosl W.Tierney A.Tager-Flusberg H.Nelson C. (2011). EEG complexity as a biomarker for autism spectrum disorder risk. BMC Med. 9:18. 10.1186/1741-7015-9-18 21342500 [OpenAIRE] [PubMed] [DOI]

Cao M.Huang H.He Y. (2017). Developmental connectomics from infancy through early childhood. Trends Neurosci. 40 494–506. 10.1016/j.tins.2017.06.003 28684174 [OpenAIRE] [PubMed] [DOI]

Costa M.Goldberger A. L.Peng C. K. (2002). Multiscale entropy analysis of complex physiologic time series. Phys. Rev. Lett. 89:068102. 10.1103/PhysRevLett.89.068102 12190613 [PubMed] [DOI]

Costa M.Goldberger A. L.Peng C. K. (2005). Multiscale entropy analysis of biological signals. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(2 Pt 1):021906. 10.1103/PhysRevE.71.021906 15783351 [PubMed] [DOI]

Faisal A. A.Selen L. P.Wolpert D. M. (2008). Noise in the nervous system. Nat. Rev. Neurosci. 9 292–303. 10.1038/nrn2258 18319728 [OpenAIRE] [PubMed] [DOI]

Fries P. (2015). Rhythms for cognition: communication through coherence. Neuron 88 220–235. 10.1016/j.neuron.2015.09.034 26447583 [OpenAIRE] [PubMed] [DOI]

Friston K. J.Tononi G.Sporns O.Edelman G. M. (1995). Characterising the complexity of neuronal interactions. Hum. Brain Mapp. 3 302–314. 10.1002/hbm.460030405 [OpenAIRE] [DOI]

Garrett D. D.Samanez-Larkin G. R.MacDonald S. W.Lindenberger U.McIntosh A. R.Grady C. L. (2013). Moment-to-moment brain signal variability: a next frontier in human brain mapping? Neurosci. Biobehav. Rev. 37 610–624. 10.1016/j.neubiorev.2013.02.015 23458776 [OpenAIRE] [PubMed] [DOI]

Giedd J. N.Blumenthal J.Jeffries N. O.Castellanos F. X.Liu H.Zijdenbos A. (1999). Brain development during childhood and adolescence: a longitudinal MRI study. Nat. Neurosci. 2 861–863. 10.1038/13158 10491603 [OpenAIRE] [PubMed] [DOI]

Grandy T. H.Garrett D. D.Schmiedek F.Werkle-Bergner M. (2016). On the estimation of brain signal entropy from sparse neuroimaging data. Sci. Rep. 6:23073. 10.1038/srep23073 27020961 [OpenAIRE] [PubMed] [DOI]

Kikuchi M.Shitamichi K.Yoshimura Y.Ueno S.Remijn G. B.Hirosawa T. (2011). Lateralized theta wave connectivity and language performance in 2- to 5-year-old children. J. Neurosci. 31 14984–14988. 10.1523/JNEUROSCI.2785-11.2011 22016531 [OpenAIRE] [PubMed] [DOI]

Landa R. J.Gross A. L.Stuart E. A.Bauman M. (2012). Latent class analysis of early developmental trajectory in baby siblings of children with autism. J. Child Psychol. Psychiatry 53 986–996. 10.1111/j.1469-7610.2012.02558.x 22574686 [OpenAIRE] [PubMed] [DOI]

Lemcke S.Juul S.Parner E. T.Lauritsen M. B.Thorsen P. (2013). Early signs of autism in toddlers: a follow-up study in the danish national birth cohort. J. Autism. Dev. Disord. 43 2366–2375. 10.1007/s10803-013-1785-z 23404041 [OpenAIRE] [PubMed] [DOI]

Lippe S.Kovacevic N.McIntosh A. R. (2009). Differential maturation of brain signal complexity in the human auditory and visual system. Front. Hum. Neurosci. 3:48. 10.3389/neuro.09.048.2009 19949455 [OpenAIRE] [PubMed] [DOI]

29 references, page 1 of 2
Abstract
The infant brain shows rapid neural network development that considerably influences cognitive and behavioral abilities in later life. Reportedly, this neural development process can be indexed by estimating neural signal complexity. However, the precise developmental trajectory of brain signal complexity during infancy remains elusive. This study was conducted to ascertain the trajectory of magnetoencephalography (MEG) signal complexity from 2 months to 3 years of age in 5 infants using multiscale entropy, which captures signal complexity at multiple temporal scales. Analyses revealed scale-dependent developmental trajectories. Specifically, signal complexity p...
Subjects
free text keywords: Neural development, Temporal scales, Artificial neural network, Multiscale entropy, Psychology, Neuroscience, Cognition, Magnetoencephalography, medicine.diagnostic_test, medicine, Sample size determination, Trajectory, Perspective, infant development, magnetoencephalography (MEG), complexity, longitudinal change, Neurosciences. Biological psychiatry. Neuropsychiatry, RC321-571
29 references, page 1 of 2

Bolton P. F.Golding J.Emond A.Steer C. D. (2012). Autism spectrum disorder and autistic traits in the avon longitudinal study of parents and children: precursors and early signs. J. Am. Acad. Child Adolesc. Psychiatry 51 249 e25–260 e25. 10.1016/j.jaac.2011.12.009 22365461 [OpenAIRE] [PubMed] [DOI]

Bosl W.Tierney A.Tager-Flusberg H.Nelson C. (2011). EEG complexity as a biomarker for autism spectrum disorder risk. BMC Med. 9:18. 10.1186/1741-7015-9-18 21342500 [OpenAIRE] [PubMed] [DOI]

Cao M.Huang H.He Y. (2017). Developmental connectomics from infancy through early childhood. Trends Neurosci. 40 494–506. 10.1016/j.tins.2017.06.003 28684174 [OpenAIRE] [PubMed] [DOI]

Costa M.Goldberger A. L.Peng C. K. (2002). Multiscale entropy analysis of complex physiologic time series. Phys. Rev. Lett. 89:068102. 10.1103/PhysRevLett.89.068102 12190613 [PubMed] [DOI]

Costa M.Goldberger A. L.Peng C. K. (2005). Multiscale entropy analysis of biological signals. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(2 Pt 1):021906. 10.1103/PhysRevE.71.021906 15783351 [PubMed] [DOI]

Faisal A. A.Selen L. P.Wolpert D. M. (2008). Noise in the nervous system. Nat. Rev. Neurosci. 9 292–303. 10.1038/nrn2258 18319728 [OpenAIRE] [PubMed] [DOI]

Fries P. (2015). Rhythms for cognition: communication through coherence. Neuron 88 220–235. 10.1016/j.neuron.2015.09.034 26447583 [OpenAIRE] [PubMed] [DOI]

Friston K. J.Tononi G.Sporns O.Edelman G. M. (1995). Characterising the complexity of neuronal interactions. Hum. Brain Mapp. 3 302–314. 10.1002/hbm.460030405 [OpenAIRE] [DOI]

Garrett D. D.Samanez-Larkin G. R.MacDonald S. W.Lindenberger U.McIntosh A. R.Grady C. L. (2013). Moment-to-moment brain signal variability: a next frontier in human brain mapping? Neurosci. Biobehav. Rev. 37 610–624. 10.1016/j.neubiorev.2013.02.015 23458776 [OpenAIRE] [PubMed] [DOI]

Giedd J. N.Blumenthal J.Jeffries N. O.Castellanos F. X.Liu H.Zijdenbos A. (1999). Brain development during childhood and adolescence: a longitudinal MRI study. Nat. Neurosci. 2 861–863. 10.1038/13158 10491603 [OpenAIRE] [PubMed] [DOI]

Grandy T. H.Garrett D. D.Schmiedek F.Werkle-Bergner M. (2016). On the estimation of brain signal entropy from sparse neuroimaging data. Sci. Rep. 6:23073. 10.1038/srep23073 27020961 [OpenAIRE] [PubMed] [DOI]

Kikuchi M.Shitamichi K.Yoshimura Y.Ueno S.Remijn G. B.Hirosawa T. (2011). Lateralized theta wave connectivity and language performance in 2- to 5-year-old children. J. Neurosci. 31 14984–14988. 10.1523/JNEUROSCI.2785-11.2011 22016531 [OpenAIRE] [PubMed] [DOI]

Landa R. J.Gross A. L.Stuart E. A.Bauman M. (2012). Latent class analysis of early developmental trajectory in baby siblings of children with autism. J. Child Psychol. Psychiatry 53 986–996. 10.1111/j.1469-7610.2012.02558.x 22574686 [OpenAIRE] [PubMed] [DOI]

Lemcke S.Juul S.Parner E. T.Lauritsen M. B.Thorsen P. (2013). Early signs of autism in toddlers: a follow-up study in the danish national birth cohort. J. Autism. Dev. Disord. 43 2366–2375. 10.1007/s10803-013-1785-z 23404041 [OpenAIRE] [PubMed] [DOI]

Lippe S.Kovacevic N.McIntosh A. R. (2009). Differential maturation of brain signal complexity in the human auditory and visual system. Front. Hum. Neurosci. 3:48. 10.3389/neuro.09.048.2009 19949455 [OpenAIRE] [PubMed] [DOI]

29 references, page 1 of 2
Powered by OpenAIRE Open Research Graph
Any information missing or wrong?Report an Issue
publication . Article . 2018

Developmental Trajectory of Infant Brain Signal Variability: A Longitudinal Pilot Study

Chiaki Hasegawa; Tetsuya Takahashi; Yuko Yoshimura; Yuko Yoshimura; Sou Nobukawa; Takashi Ikeda; Daisuke N. Saito; Hirokazu Kumazaki; Yoshio Minabe; Mitsuru Kikuchi;