publication . Other literature type . Article . 1952

Methods of conjugate gradients for solving linear systems

Eduard Stiefel; Magnus R. Hestenes;
Open Access
  • Published: 01 Dec 1952
  • Publisher: National Institute of Standards and Technology (NIST)
An iterative algorithm is given for solving a system Ax=k of n linear equations in n unknowns. The solution is given in n steps. It is shown that this method is a special case of a very general method which also includes Gaussian elimination. These general algorithms are essentially algorithms for finding an n dimensional ellipsoid. Connections are made with the theory of orthogonal polynomials and continued fractions.
free text keywords: Biconjugate gradient method, Conjugate residual method, Iterative method, Linear system, Applied mathematics, Orthogonal polynomials, Derivation of the conjugate gradient method, Conjugate gradient method, Gaussian elimination, symbols.namesake, symbols, Mathematics
Any information missing or wrong?Report an Issue