publication . Article . Conference object . 2016

Multi-channel multi-distance broadband near-infrared spectroscopy system to measure the spatial response of cellular oxygen metabolism and tissue oxygenation.

David Highton; Martin Smith; Ilias Tachtsidis; Clare E. Elwell; Phong Phan; Jonathan Lai;
Open Access English
  • Published: 05 Oct 2016 Journal: Biomedical Optics Express, volume 7, issue 11, pages 4,424-4,440 (eissn: 2156-7085, Copyright policy)
  • Publisher: Optical Society of America
  • Country: United Kingdom
Abstract
We present a multi-channel, multi-distance broadband near-infrared spectroscopy (NIRS) system with the capability of measuring changes in haemoglobin concentrations (Δ[HbO2], Δ[HHb]), oxidation state of cytochrome-c-oxidase (Δ[oxCCO]) and tissue oxygen saturation (TOI) in the adult human brain. The main components of the instrument are two customized spectrographs and two light sources. Each spectrograph is lens-based to improve light throughput, has a grating enhanced to optimise reflection in the near-infrared (NIR) spectral region and uses a front illuminated cooled CCD camera (−70° C) with a square chip dimension of 12.3 x 12.3 mm (512 x 512 pixels). Each li...
Subjects
free text keywords: Article, ocis:(170.6510) Spectroscopy, tissue diagnostics, ocis:(170.3890) Medical optics instrumentation, Biotechnology, Atomic and Molecular Physics, and Optics, Optode, Spectrograph, Absorption spectroscopy, Light intensity, Spectroscopy, Grating, Near-infrared spectroscopy, Materials science, Optics, business.industry, business, Halogen lamp, law.invention, law
49 references, page 1 of 4

parameters,” Science 198(4323), 1264-1267 (1977). 6. A. Bainbridge, I. Tachtsidis, S. D. Faulkner, D. Price, T. Zhu, E. Baer, K. D. Broad, D. L. Thomas, E. B. Cady,

Neuroimage 102(Pt 1), 173-183 (2014). 7. S. J. Matcher, C. E. Elwell, C. E. Cooper, M. Cope, and D. T. Delpy, “Performance Comparison of Several

Published Tissue Near-Infrared Spectroscopy Algorithms,” Anal. Biochem. 227(1), 54-68 (1995). 8. C. E. Cooper, M. Cope, R. Springett, P. N. Amess, J. Penrice, L. Tyszczuk, S. Punwani, R. Ordidge, J. Wyatt,

19(1), 27-38 (1999). 9. C. E. Cooper and R. Springett, “Measurement of cytochrome oxidase and mitochondrial energetics by near-

infrared spectroscopy,” Philos. Trans. R. Soc. Lond. B Biol. Sci. 352(1354), 669-676 (1997). 10. K. Uludağ, J. Steinbrink, M. Kohl-Bareis, R. Wenzel, A. Villringer, and H. Obrig, “Cytochrome-c-oxidase

cross talk artefact,” Neuroimage 22(1), 109-119 (2004). 11. G. Bale, C. E. Elwell, and I. Tachtsidis, “From Jöbsis to the present day: a review of clinical near-infrared

spectroscopy measurements of cerebral cytochrome-c-oxidase,” J. Biomed. Opt. 21(9), 091307 (2016). 12. S. Suzuki, S. Takasaki, T. Ozaki, and Y. Kobayashi, “A tissue oxygenation monitor using NIR spatially

resolved spectroscopy,” Proc. SPIE 3597, 582-592 (1999). 13. P. G. Al-Rawi, P. Smielewski, and P. J. Kirkpatrick, “Evaluation of a near-infrared spectrometer (NIRO 300) for

the detection of intracranial oxygenation changes in the adult head,” Stroke 32(11), 2492-2500 (2001). 14. C. Fedorow and H. P. Grocott, “Cerebral monitoring to optimize outcomes after cardiac surgery,” Curr. Opin.

Anaesthesiol. 23(1), 89-94 (2010). 15. H. A. Vohra, A. Modi, and S. K. Ohri, “Does use of intra-operative cerebral regional oxygen saturation

9(2), 318-322 (2009). 16. C. Kolyva, I. Tachtsidis, A. Ghosh, T. Moroz, C. E. Cooper, M. Smith, and C. E. Elwell, “Systematic

in healthy adults,” Biomed. Opt. Express 3(10), 2550-2566 (2012). 17. J. E. Brazy and D. V. Lewis, “Changes in cerebral blood volume and cytochrome aa3 during hypertensive peaks

in preterm infants,” J. Pediatr. 108(6), 983-987 (1986). 18. J. E. Brazy, D. V. Lewis, M. H. Mitnick, and F. F. Jöbsis vander Vliet, “Noninvasive Monitoring of Cerebral

Oxygenation in Preterm Infants: Preliminary Observations,” Pediatrics 75(2), 217-225 (1985). 19. N. B. Hampson, E. M. Camporesi, B. W. Stolp, R. E. Moon, J. E. Shook, J. A. Griebel, and C. A. Piantadosi,

69(3), 907-913 (1990). 20. J. S. Wyatt, M. Cope, D. T. Delpy, S. Wray, and E. O. R. Reynolds, “Quantification of cerebral oxygenation and

49 references, page 1 of 4
Abstract
We present a multi-channel, multi-distance broadband near-infrared spectroscopy (NIRS) system with the capability of measuring changes in haemoglobin concentrations (Δ[HbO2], Δ[HHb]), oxidation state of cytochrome-c-oxidase (Δ[oxCCO]) and tissue oxygen saturation (TOI) in the adult human brain. The main components of the instrument are two customized spectrographs and two light sources. Each spectrograph is lens-based to improve light throughput, has a grating enhanced to optimise reflection in the near-infrared (NIR) spectral region and uses a front illuminated cooled CCD camera (−70° C) with a square chip dimension of 12.3 x 12.3 mm (512 x 512 pixels). Each li...
Subjects
free text keywords: Article, ocis:(170.6510) Spectroscopy, tissue diagnostics, ocis:(170.3890) Medical optics instrumentation, Biotechnology, Atomic and Molecular Physics, and Optics, Optode, Spectrograph, Absorption spectroscopy, Light intensity, Spectroscopy, Grating, Near-infrared spectroscopy, Materials science, Optics, business.industry, business, Halogen lamp, law.invention, law
49 references, page 1 of 4

parameters,” Science 198(4323), 1264-1267 (1977). 6. A. Bainbridge, I. Tachtsidis, S. D. Faulkner, D. Price, T. Zhu, E. Baer, K. D. Broad, D. L. Thomas, E. B. Cady,

Neuroimage 102(Pt 1), 173-183 (2014). 7. S. J. Matcher, C. E. Elwell, C. E. Cooper, M. Cope, and D. T. Delpy, “Performance Comparison of Several

Published Tissue Near-Infrared Spectroscopy Algorithms,” Anal. Biochem. 227(1), 54-68 (1995). 8. C. E. Cooper, M. Cope, R. Springett, P. N. Amess, J. Penrice, L. Tyszczuk, S. Punwani, R. Ordidge, J. Wyatt,

19(1), 27-38 (1999). 9. C. E. Cooper and R. Springett, “Measurement of cytochrome oxidase and mitochondrial energetics by near-

infrared spectroscopy,” Philos. Trans. R. Soc. Lond. B Biol. Sci. 352(1354), 669-676 (1997). 10. K. Uludağ, J. Steinbrink, M. Kohl-Bareis, R. Wenzel, A. Villringer, and H. Obrig, “Cytochrome-c-oxidase

cross talk artefact,” Neuroimage 22(1), 109-119 (2004). 11. G. Bale, C. E. Elwell, and I. Tachtsidis, “From Jöbsis to the present day: a review of clinical near-infrared

spectroscopy measurements of cerebral cytochrome-c-oxidase,” J. Biomed. Opt. 21(9), 091307 (2016). 12. S. Suzuki, S. Takasaki, T. Ozaki, and Y. Kobayashi, “A tissue oxygenation monitor using NIR spatially

resolved spectroscopy,” Proc. SPIE 3597, 582-592 (1999). 13. P. G. Al-Rawi, P. Smielewski, and P. J. Kirkpatrick, “Evaluation of a near-infrared spectrometer (NIRO 300) for

the detection of intracranial oxygenation changes in the adult head,” Stroke 32(11), 2492-2500 (2001). 14. C. Fedorow and H. P. Grocott, “Cerebral monitoring to optimize outcomes after cardiac surgery,” Curr. Opin.

Anaesthesiol. 23(1), 89-94 (2010). 15. H. A. Vohra, A. Modi, and S. K. Ohri, “Does use of intra-operative cerebral regional oxygen saturation

9(2), 318-322 (2009). 16. C. Kolyva, I. Tachtsidis, A. Ghosh, T. Moroz, C. E. Cooper, M. Smith, and C. E. Elwell, “Systematic

in healthy adults,” Biomed. Opt. Express 3(10), 2550-2566 (2012). 17. J. E. Brazy and D. V. Lewis, “Changes in cerebral blood volume and cytochrome aa3 during hypertensive peaks

in preterm infants,” J. Pediatr. 108(6), 983-987 (1986). 18. J. E. Brazy, D. V. Lewis, M. H. Mitnick, and F. F. Jöbsis vander Vliet, “Noninvasive Monitoring of Cerebral

Oxygenation in Preterm Infants: Preliminary Observations,” Pediatrics 75(2), 217-225 (1985). 19. N. B. Hampson, E. M. Camporesi, B. W. Stolp, R. E. Moon, J. E. Shook, J. A. Griebel, and C. A. Piantadosi,

69(3), 907-913 (1990). 20. J. S. Wyatt, M. Cope, D. T. Delpy, S. Wray, and E. O. R. Reynolds, “Quantification of cerebral oxygenation and

49 references, page 1 of 4
Any information missing or wrong?Report an Issue