publication . Other literature type . Article . 2017

Genomics of parallel adaptation at two timescales in Drosophila

Li Zhao; Li Zhao; David J. Begun;
Open Access
  • Published: 01 Oct 2017
  • Publisher: Public Library of Science (PLoS)
  • Country: United States
Abstract
Two interesting unanswered questions are the extent to which both the broad patterns and genetic details of adaptive divergence are repeatable across species, and the timescales over which parallel adaptation may be observed. Drosophila melanogaster is a key model system for population and evolutionary genomics. Findings from genetics and genomics suggest that recent adaptation to latitudinal environmental variation (on the timescale of hundreds or thousands of years) associated with Out-of-Africa colonization plays an important role in maintaining biological variation in the species. Additionally, studies of interspecific differences between D. melanogaster and...
Subjects
free text keywords: Research Article, Research and Analysis Methods, Experimental Organism Systems, Model Organisms, Animal Models, Biology and Life Sciences, Organisms, Eukaryota, Animals, Invertebrates, Arthropoda, Insects, Drosophila, Animal Genomics, Invertebrate Genomics, Gene Expression, Evolutionary Processes, Evolutionary Adaptation, Computational Biology, Genome Analysis, Genomic Libraries, People and places, Geographical locations, North America, Central America, Panama, Cell Biology, Chromosome Biology, Chromosomes, Sex Chromosomes, X Chromosomes, Physiological, Drosophila simulans, Evolution, Molecular, Female, Gene Frequency, Male, Molecular Sequence Annotation, Polymorphism, Single Nucleotide, Species Specificity, QH426-470, Cosmopolitan distribution, Interspecific competition, Genomics, Divergence, Drosophila melanogaster, biology.organism_classification, biology, Adaptation, Melanogaster, Population, education.field_of_study, education, Evolutionary biology, Genetics
Funded by
NIH| Investigating de novo gene evolution in Drosophila melanogaster
Project
  • Funder: National Institutes of Health (NIH)
  • Project Code: 5R01GM110258-03
  • Funding stream: NATIONAL INSTITUTE OF GENERAL MEDICAL SCIENCES
119 references, page 1 of 8

1 Futuyma DJ. Evolution. Sinauer Associates INC 2005.

2 Ffrench-Constant RH, Rocheleau TA, Steichen JC, Chalmers AE. A point mutation in a Drosophila GABA receptor confers insecticide resistance. Nature. 1993;363: 449–451. doi: 10.1038/363449a0 8389005 [OpenAIRE] [PubMed]

3 Ffrench-Constant RH. The molecular genetics of insecticide resistance. Genetics. 2013;194: 807–15. doi: 10.1534/genetics.112.141895 23908373 [OpenAIRE] [PubMed]

4 Patterson JT, Stone WS. Evolution in the genus drosophila. New York: The Macmillan Company 1952 doi: 10.1002/sce.3730380440

5 Powell JR. Progress and prospects in evolutionary biology: the Drosophila model. Oxford University Press 1997.

6 Vigue CL, Johnson FM. Isozyme variability in species of the genus Drosophila. VI. Frequency-property-environment relationships of allelic alcohol dehydrogenases in D. melanogaster. Biochem Genet. 1973;9: 213–227. doi: 10.1007/BF00485735 4200096 [PubMed]

7 Singh RS, Long AD. Geographic variation in Drosophila: From molecules to morphology and back. Trends Ecol Evol. 1992;7: 340–345. doi: 10.1016/0169-5347(92)90127-W 21236059 [PubMed]

8 Parkash R, Munjal AK. Climatic selection of starvation and desiccation resistance in populations of some tropical drosophilids. J Zool Syst Evol Res. 2009;37: 195–202. doi: 10.1111/j.1439-0469.1999.tb00983.x [OpenAIRE]

9 Hallas R, Schiffer M, Hoffmann AA. Clinal variation in Drosophila serrata for stress resistance and body size. Genet Res. 2002;79: 141–8. 12073552 [PubMed]

10 De Jong G, Bochdanovits Z. Latitudinal clines in Drosophila melanogaster: body size, allozyme frequencies, inversion frequencies, and the insulin-signalling pathway. J Genet. 2003;82: 207–223. 15133196 [PubMed]

11 Hoffmann AA, Weeks AR. Climatic selection on genes and traits after a 100 year-old invasion: a critical look at the temperate-tropical clines in Drosophila melanogaster from eastern Australia. Genetica. 2007;129: 133–147. doi: 10.1007/s10709-006-9010-z 16955331 [OpenAIRE] [PubMed]

12 Arthur AL, Weeks AR, SgròCM. Investigating latitudinal clines for life history and stress resistance traits in Drosophila simulans from eastern Australia. J Evol Biol. 2008;21: 1470–1479. doi: 10.1111/j.1420-9101.2008.01617.x 18811666 [PubMed]

13 Adrion JR, Hahn MW, Cooper BS. Revisiting classic clines in Drosophila melanogaster in the age of genomics. Trends Genet. 2015;31: 434–444. doi: 10.1016/j.tig.2015.05.006 26072452 [OpenAIRE] [PubMed]

14 Tsacas L, Lachaise D. Quatre nouvelles espèces de la Côte d’Ivoire du genre Drosophila, groupe melanogaster, et discussion de l’origine du sous-groupe melanogaster (Diptera: Drosophilidae). Ann Univ Abidjan E. 1974;7: 193–221.

15 David J, Capy P. Genetic variation of Drosophila melanogaster natural populations. Trends in Genetics. 1988;4:106–111. doi: 10.1016/0168-9525(88)90098-4 3149056 [OpenAIRE] [PubMed]

119 references, page 1 of 8
Abstract
Two interesting unanswered questions are the extent to which both the broad patterns and genetic details of adaptive divergence are repeatable across species, and the timescales over which parallel adaptation may be observed. Drosophila melanogaster is a key model system for population and evolutionary genomics. Findings from genetics and genomics suggest that recent adaptation to latitudinal environmental variation (on the timescale of hundreds or thousands of years) associated with Out-of-Africa colonization plays an important role in maintaining biological variation in the species. Additionally, studies of interspecific differences between D. melanogaster and...
Subjects
free text keywords: Research Article, Research and Analysis Methods, Experimental Organism Systems, Model Organisms, Animal Models, Biology and Life Sciences, Organisms, Eukaryota, Animals, Invertebrates, Arthropoda, Insects, Drosophila, Animal Genomics, Invertebrate Genomics, Gene Expression, Evolutionary Processes, Evolutionary Adaptation, Computational Biology, Genome Analysis, Genomic Libraries, People and places, Geographical locations, North America, Central America, Panama, Cell Biology, Chromosome Biology, Chromosomes, Sex Chromosomes, X Chromosomes, Physiological, Drosophila simulans, Evolution, Molecular, Female, Gene Frequency, Male, Molecular Sequence Annotation, Polymorphism, Single Nucleotide, Species Specificity, QH426-470, Cosmopolitan distribution, Interspecific competition, Genomics, Divergence, Drosophila melanogaster, biology.organism_classification, biology, Adaptation, Melanogaster, Population, education.field_of_study, education, Evolutionary biology, Genetics
Funded by
NIH| Investigating de novo gene evolution in Drosophila melanogaster
Project
  • Funder: National Institutes of Health (NIH)
  • Project Code: 5R01GM110258-03
  • Funding stream: NATIONAL INSTITUTE OF GENERAL MEDICAL SCIENCES
119 references, page 1 of 8

1 Futuyma DJ. Evolution. Sinauer Associates INC 2005.

2 Ffrench-Constant RH, Rocheleau TA, Steichen JC, Chalmers AE. A point mutation in a Drosophila GABA receptor confers insecticide resistance. Nature. 1993;363: 449–451. doi: 10.1038/363449a0 8389005 [OpenAIRE] [PubMed]

3 Ffrench-Constant RH. The molecular genetics of insecticide resistance. Genetics. 2013;194: 807–15. doi: 10.1534/genetics.112.141895 23908373 [OpenAIRE] [PubMed]

4 Patterson JT, Stone WS. Evolution in the genus drosophila. New York: The Macmillan Company 1952 doi: 10.1002/sce.3730380440

5 Powell JR. Progress and prospects in evolutionary biology: the Drosophila model. Oxford University Press 1997.

6 Vigue CL, Johnson FM. Isozyme variability in species of the genus Drosophila. VI. Frequency-property-environment relationships of allelic alcohol dehydrogenases in D. melanogaster. Biochem Genet. 1973;9: 213–227. doi: 10.1007/BF00485735 4200096 [PubMed]

7 Singh RS, Long AD. Geographic variation in Drosophila: From molecules to morphology and back. Trends Ecol Evol. 1992;7: 340–345. doi: 10.1016/0169-5347(92)90127-W 21236059 [PubMed]

8 Parkash R, Munjal AK. Climatic selection of starvation and desiccation resistance in populations of some tropical drosophilids. J Zool Syst Evol Res. 2009;37: 195–202. doi: 10.1111/j.1439-0469.1999.tb00983.x [OpenAIRE]

9 Hallas R, Schiffer M, Hoffmann AA. Clinal variation in Drosophila serrata for stress resistance and body size. Genet Res. 2002;79: 141–8. 12073552 [PubMed]

10 De Jong G, Bochdanovits Z. Latitudinal clines in Drosophila melanogaster: body size, allozyme frequencies, inversion frequencies, and the insulin-signalling pathway. J Genet. 2003;82: 207–223. 15133196 [PubMed]

11 Hoffmann AA, Weeks AR. Climatic selection on genes and traits after a 100 year-old invasion: a critical look at the temperate-tropical clines in Drosophila melanogaster from eastern Australia. Genetica. 2007;129: 133–147. doi: 10.1007/s10709-006-9010-z 16955331 [OpenAIRE] [PubMed]

12 Arthur AL, Weeks AR, SgròCM. Investigating latitudinal clines for life history and stress resistance traits in Drosophila simulans from eastern Australia. J Evol Biol. 2008;21: 1470–1479. doi: 10.1111/j.1420-9101.2008.01617.x 18811666 [PubMed]

13 Adrion JR, Hahn MW, Cooper BS. Revisiting classic clines in Drosophila melanogaster in the age of genomics. Trends Genet. 2015;31: 434–444. doi: 10.1016/j.tig.2015.05.006 26072452 [OpenAIRE] [PubMed]

14 Tsacas L, Lachaise D. Quatre nouvelles espèces de la Côte d’Ivoire du genre Drosophila, groupe melanogaster, et discussion de l’origine du sous-groupe melanogaster (Diptera: Drosophilidae). Ann Univ Abidjan E. 1974;7: 193–221.

15 David J, Capy P. Genetic variation of Drosophila melanogaster natural populations. Trends in Genetics. 1988;4:106–111. doi: 10.1016/0168-9525(88)90098-4 3149056 [OpenAIRE] [PubMed]

119 references, page 1 of 8
Any information missing or wrong?Report an Issue