publication . Article . 2016

Charophytes: Evolutionary Giants and Emerging Model Organisms.

Iben Sørensen; Zoe Popper;
Open Access
  • Published: 10 Oct 2016
Abstract
Charophytes are the group of green algae whose ancestral lineage gave rise to land plants in what resulted in a profoundly transformative event in the natural history of the planet. Extant charophytes exhibit many features that are similar to those found in land plants and their relatively simple phenotypes make them efficacious organisms for the study of many fundamental biological phenomena. Several taxa including Micrasterias, Penium, Chara, and Coleochaete are valuable model organisms for the study of cell biology, development, physiology and ecology of plants. New and rapidly expanding molecular studies are increasing the use of charophytes that in turn, wi...
Subjects
Medical Subject Headings: food and beverages
free text keywords: Plant Science, charophytes, evolution, model organisms, Micrasterias, Penium, Plant culture, SB1-1110, Mini Review
Related Organizations
99 references, page 1 of 7

Abe J. Hori S. Sato M. Sekimoto H. (2016). Concanavalin A-binding molecule on conjugation papillae is essential for release of gametes in a unicellular charophycean alga, Closterium peracerosum-strigosum-littorale complex. Front. Plant Sci. 7:1040. 10.3389/fpls.2016.01040 [OpenAIRE] [DOI]

Affenzeller M. J. Darehshouri A. Andosch A. Lutz C. Lutz-Meindl U. (2009). Salt stress-induced cell death in the unicellular green alga Micrasterias denticulata. J. Exp. Bot. 60 939–954. 10.1093/jxb/ern348 [OpenAIRE] [DOI]

Aichinger N. Lutz-Meindl U. (2005). Organelle interactions and possible degradation pathways visualized in high pressure frozen algal cells. J. Microsc. 219 86–94. 10.1111/j.1365-2818.2005.01496.x [OpenAIRE] [DOI]

Andosch A. Affenzeller M. J. Lutz C. Lutz-Meindl U. (2012). A freshwater green alga under cadmium stress: ameliorating calcium effects on ultrastructure and photosynthesis in the unicellular model Micrasterias. J. Plant Physiol. 169 1489–1500. 10.1016/j.jplph.2012.06.002 [OpenAIRE] [DOI]

Becker B. Becker D. Kamerling J. P. Melkonian M. (1991). 2-keto-sugar acids in green flagellates — a chemical marker for prasinophycean scales. J. Phycol. 27 498–504. 10.1111/j.0022-3646.1991.00498.x [OpenAIRE] [DOI]

Becker B. Marin B. (2009). Streptophyte algae and the origin of embryophytes. Ann. Bot. 103 999–1004. 10.1093/aob/mcp044 [OpenAIRE] [DOI]

Belby M. J. (2016). Multi-scale characean experimental system: from electrophysiology of membrane transporters to cell-to-cell connectivity, cytoplasmic streaming and auxin metabolism. Front. Plant Sci. 7:1052. 10.3389/fpls.2016.01052 [OpenAIRE] [DOI]

Besson S. Dumais J. (2011). Universal rule for the symmetric division of plant cells. Proc. Natl. Acad. Sci. U.S.A. 108 6294–6299. [OpenAIRE]

Boot K. J. M. Libbenga K. R. Hille S. C. Offringa R. van Duijn B. (2012). Polar auxin transport: an early invention. J. Expt. Bot. 63 4213–4218. 10.1093/jxb/ers106 [OpenAIRE] [DOI]

Boyer J. (2016). Enzyme-less growth in Chara and terrestrial plants. Front. Plant Sci. 7:866. 10.3389/fpls.2016.00866 [OpenAIRE] [DOI]

Braun M. (2002). Gravity perception requires statoliths settled on specific plasma membrane areas in characean rhizoids and protonemata. Protoplasma 219 150–159. 10.1007/s007090200016 [OpenAIRE] [DOI]

Braun M. Limbach C. (2006). Rhizoids and protonemata of characean algae: model cells for research on polarized growth and plant gravity sensing. Protoplasma 229 133–142. 10.1007/s00709-006-0208-9 [OpenAIRE] [DOI]

Brown R. C. Lemmon B. E. Graham L. E. (1994). Morphogenetic plastid migration and microtubule arrays in mitosis and cytokinesis in the green alga Coleochaete orbicularis. Am. J. Bot. 81 127–133. 10.2307/2445625 [DOI]

Cook M. E. (2004). Cytokinesis in Coleochaete orbicularis (Charophyceae): an ancestral mechanism inherited in plants. Am. J. Bot. 91 313–320. 10.3732/ajb.91.3.313 [OpenAIRE] [DOI]

Darehshouri A. Affenzeller M. Lutz-Meindl U. (2008). Cell death upon H 2 O 2 induction in the unicellular green alga Micrasterias. Plant Biol. 10 732–745. 10.1111/j.1438-8677.2008.00078.x [OpenAIRE] [DOI]

99 references, page 1 of 7
Abstract
Charophytes are the group of green algae whose ancestral lineage gave rise to land plants in what resulted in a profoundly transformative event in the natural history of the planet. Extant charophytes exhibit many features that are similar to those found in land plants and their relatively simple phenotypes make them efficacious organisms for the study of many fundamental biological phenomena. Several taxa including Micrasterias, Penium, Chara, and Coleochaete are valuable model organisms for the study of cell biology, development, physiology and ecology of plants. New and rapidly expanding molecular studies are increasing the use of charophytes that in turn, wi...
Subjects
Medical Subject Headings: food and beverages
free text keywords: Plant Science, charophytes, evolution, model organisms, Micrasterias, Penium, Plant culture, SB1-1110, Mini Review
Related Organizations
99 references, page 1 of 7

Abe J. Hori S. Sato M. Sekimoto H. (2016). Concanavalin A-binding molecule on conjugation papillae is essential for release of gametes in a unicellular charophycean alga, Closterium peracerosum-strigosum-littorale complex. Front. Plant Sci. 7:1040. 10.3389/fpls.2016.01040 [OpenAIRE] [DOI]

Affenzeller M. J. Darehshouri A. Andosch A. Lutz C. Lutz-Meindl U. (2009). Salt stress-induced cell death in the unicellular green alga Micrasterias denticulata. J. Exp. Bot. 60 939–954. 10.1093/jxb/ern348 [OpenAIRE] [DOI]

Aichinger N. Lutz-Meindl U. (2005). Organelle interactions and possible degradation pathways visualized in high pressure frozen algal cells. J. Microsc. 219 86–94. 10.1111/j.1365-2818.2005.01496.x [OpenAIRE] [DOI]

Andosch A. Affenzeller M. J. Lutz C. Lutz-Meindl U. (2012). A freshwater green alga under cadmium stress: ameliorating calcium effects on ultrastructure and photosynthesis in the unicellular model Micrasterias. J. Plant Physiol. 169 1489–1500. 10.1016/j.jplph.2012.06.002 [OpenAIRE] [DOI]

Becker B. Becker D. Kamerling J. P. Melkonian M. (1991). 2-keto-sugar acids in green flagellates — a chemical marker for prasinophycean scales. J. Phycol. 27 498–504. 10.1111/j.0022-3646.1991.00498.x [OpenAIRE] [DOI]

Becker B. Marin B. (2009). Streptophyte algae and the origin of embryophytes. Ann. Bot. 103 999–1004. 10.1093/aob/mcp044 [OpenAIRE] [DOI]

Belby M. J. (2016). Multi-scale characean experimental system: from electrophysiology of membrane transporters to cell-to-cell connectivity, cytoplasmic streaming and auxin metabolism. Front. Plant Sci. 7:1052. 10.3389/fpls.2016.01052 [OpenAIRE] [DOI]

Besson S. Dumais J. (2011). Universal rule for the symmetric division of plant cells. Proc. Natl. Acad. Sci. U.S.A. 108 6294–6299. [OpenAIRE]

Boot K. J. M. Libbenga K. R. Hille S. C. Offringa R. van Duijn B. (2012). Polar auxin transport: an early invention. J. Expt. Bot. 63 4213–4218. 10.1093/jxb/ers106 [OpenAIRE] [DOI]

Boyer J. (2016). Enzyme-less growth in Chara and terrestrial plants. Front. Plant Sci. 7:866. 10.3389/fpls.2016.00866 [OpenAIRE] [DOI]

Braun M. (2002). Gravity perception requires statoliths settled on specific plasma membrane areas in characean rhizoids and protonemata. Protoplasma 219 150–159. 10.1007/s007090200016 [OpenAIRE] [DOI]

Braun M. Limbach C. (2006). Rhizoids and protonemata of characean algae: model cells for research on polarized growth and plant gravity sensing. Protoplasma 229 133–142. 10.1007/s00709-006-0208-9 [OpenAIRE] [DOI]

Brown R. C. Lemmon B. E. Graham L. E. (1994). Morphogenetic plastid migration and microtubule arrays in mitosis and cytokinesis in the green alga Coleochaete orbicularis. Am. J. Bot. 81 127–133. 10.2307/2445625 [DOI]

Cook M. E. (2004). Cytokinesis in Coleochaete orbicularis (Charophyceae): an ancestral mechanism inherited in plants. Am. J. Bot. 91 313–320. 10.3732/ajb.91.3.313 [OpenAIRE] [DOI]

Darehshouri A. Affenzeller M. Lutz-Meindl U. (2008). Cell death upon H 2 O 2 induction in the unicellular green alga Micrasterias. Plant Biol. 10 732–745. 10.1111/j.1438-8677.2008.00078.x [OpenAIRE] [DOI]

99 references, page 1 of 7
Powered by OpenAIRE Research Graph
Any information missing or wrong?Report an Issue