18 references, page 1 of 2

[1] A. Ambainis. A better lower bound for quantum algorithms searching an ordered list. Proceedings of FOCS'99, pages 352-357. Also1 quant-ph/9902053.

[2] A. Ambainis, L. Schulman, A. Ta-Shma, U. Vazirani, A. Wigderson. Quantum communication complexity of sampling. Proceedings of FOCS'98, pages 342-351.

[3] R. Beals, H. Buhrman, R. Cleve, M. Mosca, R. de Wolf. Quantum lower bounds by polynomials. Proceedings of FOCS'98, pages 352-361. Also quant-ph/9802049.

[4] C. Bennett, E. Bernstein, G. Brassard, U. Vazirani. Strengths and weaknesses of quantum computing. SIAM Journal on Computing, 26(3):1510-1523, 1997, quant-ph/9701001.

[5] G. Brassard, P. Høyer, and A. Tapp. Quantum algorithm for the collision problem. ACM SIGACT News (Cryptology Column), 28:14-19, 1997. quant-ph/9705002. [OpenAIRE]

[6] H. Buhrman, R. Cleve, R. de Wolf, C. Zalka. Bounds for small-error and zero-error quantum algorithms. Proceedings of FOCS'99, pages 358-368. Also cs.CC/9904019.

[7] H. Buhrman, R. Cleve, A. Wigderson. Quantum vs. classical communication and computation. Proceedings of STOC'98, pages 63-68. Also quant-ph/9802046.

[8] H. Buhrman, R. de Wolf. Communication complexity lower bounds by polynomials. cs.CC/9910010.

[9] L. Grover. A fast quantum mechanical algorithm for database search, Proceedings of the 28th ACM Symposium on Theory of Computing, pp. 212-219, 1996, quant-ph/9605043. [OpenAIRE]

[10] L. Grover. How fast can a quantum computer search? quant-ph/9809029.

[11] A. Yu. Kitaev. Quantum measurements and the Abelian stabilizer problem. quant-ph/9511026.

[12] B. Kalyanasundaram, G. Schnitger. The probabilistic communication complexity of set intersection. Proceedings of Structures'87, pages 41-49, 1987.

[13] A. Nayak and F. Wu. The quantum query complexity of approximating the median and related statistics. In Proceedings of 31th STOC, pages 384-393, 1999. Also quant-ph/9804066.

[14] N. Nisan. CREW PRAMs and decision trees. SIAM Journal on Computing, 20:999-1007, 1991. Also STOC'89.

[15] A. Razborov. On the distributional complexity of disjointness. Theoretical Computer Science, 106:385- 90, 1992. Also ICALP'90. [OpenAIRE]

18 references, page 1 of 2