publication . Preprint . Other literature type . Article . 2018

The key player problem in complex oscillator networks and electric power grids: Resistance centralities identify local vulnerabilities

Tyloo, M.; Pagnier, L.; Jacquod, P.;
Open Access English
  • Published: 23 Oct 2018
Abstract
Comment: Submitted on August 28th 2018
Subjects
free text keywords: Nonlinear Sciences - Adaptation and Self-Organizing Systems, Condensed Matter - Disordered Systems and Neural Networks, Physics - Physics and Society, Research Article, Research Articles, SciAdv r-articles, Applied Sciences and Engineering, Laplacian matrix, Parameter identification problem, Network theory, Dynamical systems theory, Laplace operator, Biology, Complex network, Topology, Ranking, Condensed matter physics, Matrix decomposition
56 references, page 1 of 4

1 Kramer D., Models poised to boost grid efficiency. Phys. Today 9, 25 (2016).

2 National Academies of Sciences, Engineering, and Medicine, Analytic Research Foundations for the Next-Generation Electric Grid (The National Academies Press, 2016).

3 Fliscounakis S., Panciatici P., Capitanescu F., Wehenkel L., Contingency ranking with respect to overloads in very large power systems taking into account uncertainty, preventive, and corrective actions. IEEE Trans. Power Syst.28, 4909–4917 (2013). [OpenAIRE]

4 Ballester C., Calvó-Armengol A., Zenou Y., Who’s who in networks. wanted: The key player. Econometrica 74, 1403–1417 (2006).

5 Borgatti S. P., Identifying sets of key players in a social network. Comput. Math. Organ. Theor.12, 21–34 (2006). [OpenAIRE]

6 SoléR. V., Montoya J. M., Complexity and fragility in ecological networks. Proc. R. Soc. Lond. B Biol. Sci.268, 2039 (2001).

7 Montoya J. M., Pimm S. L., SoléR. V., Ecological networks and their fragility. Nature 442, 259 (2006).16855581 [OpenAIRE] [PubMed]

8 Borgatti S. P., Centrality and network flow. Soc. Netw.27, 55–71 (2005).

9 Boldi P., Vigna S., Axioms for centrality. Internet Math.10, 222 (2014).

10 Bonacich P., Power and centrality: A family of measures. Amer. J. Sociol.92, 1170 (1987). [OpenAIRE]

11 Brin S., Page L., The anatomy of a large-scale hypertextual web search engine. Comput. Netw. ISDN Syst.30, 107 (1998).

12 Kitsak M., Gallos L. K., Havlin S., Liljeros F., Muchnik L., Stanley H. E., Makse H. A., Identification of influential spreaders in complex networks. Nat. Phys.6, 888 (2010). [OpenAIRE]

13 Borge-Holthoefer J., Moreno Y., Absence of influential spreaders in rumor dynamics. Phys. Rev. E 85, 026116 (2012). [OpenAIRE]

14 Girvan M., Newman M. E. J., Community structure in social and biological networks. Proc. Natl. Acad. Sci. U.S.A.99, 7821 (2002).12060727 [OpenAIRE] [PubMed]

15 Banda M. K., Herty M., Klar A., Gas flow in pipeline networks. Netw. Heterog. Media 1, 41 (2006). [OpenAIRE]

56 references, page 1 of 4
Abstract
Comment: Submitted on August 28th 2018
Subjects
free text keywords: Nonlinear Sciences - Adaptation and Self-Organizing Systems, Condensed Matter - Disordered Systems and Neural Networks, Physics - Physics and Society, Research Article, Research Articles, SciAdv r-articles, Applied Sciences and Engineering, Laplacian matrix, Parameter identification problem, Network theory, Dynamical systems theory, Laplace operator, Biology, Complex network, Topology, Ranking, Condensed matter physics, Matrix decomposition
56 references, page 1 of 4

1 Kramer D., Models poised to boost grid efficiency. Phys. Today 9, 25 (2016).

2 National Academies of Sciences, Engineering, and Medicine, Analytic Research Foundations for the Next-Generation Electric Grid (The National Academies Press, 2016).

3 Fliscounakis S., Panciatici P., Capitanescu F., Wehenkel L., Contingency ranking with respect to overloads in very large power systems taking into account uncertainty, preventive, and corrective actions. IEEE Trans. Power Syst.28, 4909–4917 (2013). [OpenAIRE]

4 Ballester C., Calvó-Armengol A., Zenou Y., Who’s who in networks. wanted: The key player. Econometrica 74, 1403–1417 (2006).

5 Borgatti S. P., Identifying sets of key players in a social network. Comput. Math. Organ. Theor.12, 21–34 (2006). [OpenAIRE]

6 SoléR. V., Montoya J. M., Complexity and fragility in ecological networks. Proc. R. Soc. Lond. B Biol. Sci.268, 2039 (2001).

7 Montoya J. M., Pimm S. L., SoléR. V., Ecological networks and their fragility. Nature 442, 259 (2006).16855581 [OpenAIRE] [PubMed]

8 Borgatti S. P., Centrality and network flow. Soc. Netw.27, 55–71 (2005).

9 Boldi P., Vigna S., Axioms for centrality. Internet Math.10, 222 (2014).

10 Bonacich P., Power and centrality: A family of measures. Amer. J. Sociol.92, 1170 (1987). [OpenAIRE]

11 Brin S., Page L., The anatomy of a large-scale hypertextual web search engine. Comput. Netw. ISDN Syst.30, 107 (1998).

12 Kitsak M., Gallos L. K., Havlin S., Liljeros F., Muchnik L., Stanley H. E., Makse H. A., Identification of influential spreaders in complex networks. Nat. Phys.6, 888 (2010). [OpenAIRE]

13 Borge-Holthoefer J., Moreno Y., Absence of influential spreaders in rumor dynamics. Phys. Rev. E 85, 026116 (2012). [OpenAIRE]

14 Girvan M., Newman M. E. J., Community structure in social and biological networks. Proc. Natl. Acad. Sci. U.S.A.99, 7821 (2002).12060727 [OpenAIRE] [PubMed]

15 Banda M. K., Herty M., Klar A., Gas flow in pipeline networks. Netw. Heterog. Media 1, 41 (2006). [OpenAIRE]

56 references, page 1 of 4
Powered by OpenAIRE Open Research Graph
Any information missing or wrong?Report an Issue
publication . Preprint . Other literature type . Article . 2018

The key player problem in complex oscillator networks and electric power grids: Resistance centralities identify local vulnerabilities

Tyloo, M.; Pagnier, L.; Jacquod, P.;