publication . Article . 2018

Planetary boundary layer and circulation dynamics at Gale Crater, Mars

Ricardo Fonseca; Javier Martin-Torres; Javier Martin-Torres; Maria Paz Zorzano-Mier; Maria Paz Zorzano-Mier;
Open Access
  • Published: 01 Mar 2018 Journal: Icarus, volume 302, pages 537-559 (issn: 0019-1035, Copyright policy)
  • Publisher: Elsevier BV
  • Country: Spain
Abstract
The Mars implementation of the Planet Weather Research and Forecasting (PlanetWRF) model, MarsWRF, is used here to simulate the atmospheric conditions at Gale Crater for different seasons during a period coincident with the Curiosity rover operations. The model is first evaluated with the existing single-point observations from the Rover Environmental Monitoring Station (REMS), and is then used to provide a larger scale interpretation of these unique measurements as well as to give complementary information where there are gaps in the measurements. The variability of the planetary boundary layer depth may be a driver of the changes in the local dust and trace ga...
Subjects
free text keywords: Space and Planetary Science, Astronomy and Astrophysics, Mars, Dynamics, Curiosity, MarsWRF, Planetary boundary layer, Planet, Gale crater, Mars Exploration Program, Astrobiology, Atmosphere, Geology
33 references, page 1 of 3

Anderson, R.B., Bell III, J.F., 2010. Geological mapping and characterization of Gale Crater and implications for its potential as a Mars Science Laboratory landing site. Mars 5, 76-128.

Clancy, R.T., Sandor, B.J., Wolff, M.J., Christensen, P.R., Smith, M.D., Pearl, J.C., Conrath, B.J., Wilson, R.J., 2000. An intercomparison of ground-based millimeter, MGS TES, and Viking atmospheric temperature measurements: Seasonal and interannual variability of temperatures and dust loading in the global Mars atmosphere. J. Geophys. Res. 105, 9553-9571.

Conrath, B.J., 1975. Thermal structure of the Martian atmosphere during the dissipation of dust torm 1971. Icarus 24, 34-46.

Forget, F., Hourdin, F., Fournier, R., Hourdin, C., Talagrand, O., Collins, M., Lewis, S.R., Read, P.L., Huot, J.-P., 1999. Improved general circulation models of the Martian atmosphere from the surface to above 80 km. J. Geophys. Res. 104, 24155-24175.

Gómez-Elvira, J., Armiens, C., Castañer, L., Domínguez, M., Genzer, M., Gómez, F., Haberle, R., Harri, A.-M., Jiménez, V., Kahanpää, H., Kowalski, L., Lepinette, A., Martín, J., Martínez-Frías, J., McEwan, I., Mora, L., Moreno, J., Navarro, S., de Pablo, M.A., Peinado, V., Peña, A., Polkko, J., Ramos, M., Rennó, N.O., Ricart, J., Richardson, M., Rodríguez-Manfredi, J., Romeral, J., Sebastián, E., Serrano, J., de la Torre Juárez, M., Torres, J., Torrero, F., Urquí, R., Vázquez, L., Velasco, T., Verdasca, J., Zorzano, M.-P., Martín-Torres, J., 2012. REMS: the environmental sensor suite for the mars science laboratory rover. Space Sci. Rev. 170, 583-640. [OpenAIRE]

Gómez-Elvira, J., 2013. Mars Science Laboratory Rover Environmental Monitoring Station RDR. NASA Planetary Data System Data V1.0, LSM-M-REMS-5-MODRDR-V1.0.

Gómez-Elvira, J., Armiens, C., Carrasco, I., Genzer, M., Gómez, F., Haberle, R., Hamilton, V.E., Harri, A.-M., Kahanpää, H., Kemppinen, O., Lepinette, A., Soler, J.M., Martín-Torres, J., Martínez-Frías, J., Mischna, M., Mora, L., Navarro, S., Newman, C., de Pablo, M.A., Peinado, V., Polkko, J., Rafkin, S.C.R., Ramos, M., Rennó, N.O., Richardson, M., Rodríguez-Manfredi, J.A., Romeral Planelló, J.J., Sebastián, E., de la Torre Juárez, M., Torres, J., Urquí, R., Vasavada, A.R., VerNavarro, T., Forget, F., Millour, E., Greybush, S.J., 2014. Detection of detached dust layers in the Martian atmosphere from their thermal signature using assimilation. Geophys. Res. Lett. 41, 6620-6626.

Newman, C.E., Gómez-Elvira, J., Marin, M., Navarro, S., Torres, J., Richardson, M.I., Battalio, J.M., Guzewich, S.D., Sullivan, R., de la Torre, M., Vasavada, A.R., Bridges, N.T., 2017. Winds measured by the Rover Environmental Monitoring Station (REMS) during the Mars Science Laboratory (MSL) rover's Bagnold Dunes Campaign and comparison with numerical modelling using MarsWRF. Icarus 291, 203-231.

Newman, C.E., Richardson, M.I., 2015. The impact of surface dust source exhaustion on the Martian dust cycle, dust storms and interannual variability, as simulated by the MarsWRF general circulation model. Icarus 257, 47-87.

Poch, O, Kaci, S, Stalport, F, Szopa, C, Coll, P, 2014. Laboratory insights into the chemical and kinetic evolution of several organic molecules under simulated Mars surface UV radiation conditions. Icarus 242, 50-63.

Petrosyan, A., Galperin, B., Larsen, S.E., Lewis, S.R., Määttänen, A., Read, P.L., Rennó, N., Rogberg, L.P.H.T., Savijärvi, H., Siili, T., Spiga, A., Toigo, A., Vázquez, L., 2011. The Martian atmospheric boundary layer. Rev. Geophys. 49, RG3005.

Pla-García, J., Rafkin, S.C.R., Kahre, M., Gómez-Elvira, J., Hamilton, V.E., Navarro, S., Torres, J., Marín, M., Vasavada, A., 2016. The Meteorology of Gale Crater as determined from rover environmental monitoring station observations and numerical modeling. Part I: Comparison of model simulations with observations. Icarus 280, 103-113.

Putzig, N.E., Mellon, M.T., 2007. Apparent thermal inertia and the surface heterogeneity of Mars. Icarus 191, 68-94. [OpenAIRE]

Rafkin, S.C.R., Pla-García, J., Kahre, M., Gómez-Elvira, J., Hamilton, V.E., Marín, M., Navarro, S., Torres, J., Vasavada, A., 2016. The meteorology of Gale Crater as determined from rover environmental monitoring station observations and numerical modeling. Part II: interpretation. Icarus 280, 114-138.

Richardson, M.I., Toigo, A.D., Newman, C.E., 2007. PlanetWRF: a general purpose, local to global numerical model for planetary atmospheric and climate dynamics. J. Geophys. Res. 112, E09001. doi:10.1029/2006JE002825. [OpenAIRE]

33 references, page 1 of 3
Abstract
The Mars implementation of the Planet Weather Research and Forecasting (PlanetWRF) model, MarsWRF, is used here to simulate the atmospheric conditions at Gale Crater for different seasons during a period coincident with the Curiosity rover operations. The model is first evaluated with the existing single-point observations from the Rover Environmental Monitoring Station (REMS), and is then used to provide a larger scale interpretation of these unique measurements as well as to give complementary information where there are gaps in the measurements. The variability of the planetary boundary layer depth may be a driver of the changes in the local dust and trace ga...
Subjects
free text keywords: Space and Planetary Science, Astronomy and Astrophysics, Mars, Dynamics, Curiosity, MarsWRF, Planetary boundary layer, Planet, Gale crater, Mars Exploration Program, Astrobiology, Atmosphere, Geology
33 references, page 1 of 3

Anderson, R.B., Bell III, J.F., 2010. Geological mapping and characterization of Gale Crater and implications for its potential as a Mars Science Laboratory landing site. Mars 5, 76-128.

Clancy, R.T., Sandor, B.J., Wolff, M.J., Christensen, P.R., Smith, M.D., Pearl, J.C., Conrath, B.J., Wilson, R.J., 2000. An intercomparison of ground-based millimeter, MGS TES, and Viking atmospheric temperature measurements: Seasonal and interannual variability of temperatures and dust loading in the global Mars atmosphere. J. Geophys. Res. 105, 9553-9571.

Conrath, B.J., 1975. Thermal structure of the Martian atmosphere during the dissipation of dust torm 1971. Icarus 24, 34-46.

Forget, F., Hourdin, F., Fournier, R., Hourdin, C., Talagrand, O., Collins, M., Lewis, S.R., Read, P.L., Huot, J.-P., 1999. Improved general circulation models of the Martian atmosphere from the surface to above 80 km. J. Geophys. Res. 104, 24155-24175.

Gómez-Elvira, J., Armiens, C., Castañer, L., Domínguez, M., Genzer, M., Gómez, F., Haberle, R., Harri, A.-M., Jiménez, V., Kahanpää, H., Kowalski, L., Lepinette, A., Martín, J., Martínez-Frías, J., McEwan, I., Mora, L., Moreno, J., Navarro, S., de Pablo, M.A., Peinado, V., Peña, A., Polkko, J., Ramos, M., Rennó, N.O., Ricart, J., Richardson, M., Rodríguez-Manfredi, J., Romeral, J., Sebastián, E., Serrano, J., de la Torre Juárez, M., Torres, J., Torrero, F., Urquí, R., Vázquez, L., Velasco, T., Verdasca, J., Zorzano, M.-P., Martín-Torres, J., 2012. REMS: the environmental sensor suite for the mars science laboratory rover. Space Sci. Rev. 170, 583-640. [OpenAIRE]

Gómez-Elvira, J., 2013. Mars Science Laboratory Rover Environmental Monitoring Station RDR. NASA Planetary Data System Data V1.0, LSM-M-REMS-5-MODRDR-V1.0.

Gómez-Elvira, J., Armiens, C., Carrasco, I., Genzer, M., Gómez, F., Haberle, R., Hamilton, V.E., Harri, A.-M., Kahanpää, H., Kemppinen, O., Lepinette, A., Soler, J.M., Martín-Torres, J., Martínez-Frías, J., Mischna, M., Mora, L., Navarro, S., Newman, C., de Pablo, M.A., Peinado, V., Polkko, J., Rafkin, S.C.R., Ramos, M., Rennó, N.O., Richardson, M., Rodríguez-Manfredi, J.A., Romeral Planelló, J.J., Sebastián, E., de la Torre Juárez, M., Torres, J., Urquí, R., Vasavada, A.R., VerNavarro, T., Forget, F., Millour, E., Greybush, S.J., 2014. Detection of detached dust layers in the Martian atmosphere from their thermal signature using assimilation. Geophys. Res. Lett. 41, 6620-6626.

Newman, C.E., Gómez-Elvira, J., Marin, M., Navarro, S., Torres, J., Richardson, M.I., Battalio, J.M., Guzewich, S.D., Sullivan, R., de la Torre, M., Vasavada, A.R., Bridges, N.T., 2017. Winds measured by the Rover Environmental Monitoring Station (REMS) during the Mars Science Laboratory (MSL) rover's Bagnold Dunes Campaign and comparison with numerical modelling using MarsWRF. Icarus 291, 203-231.

Newman, C.E., Richardson, M.I., 2015. The impact of surface dust source exhaustion on the Martian dust cycle, dust storms and interannual variability, as simulated by the MarsWRF general circulation model. Icarus 257, 47-87.

Poch, O, Kaci, S, Stalport, F, Szopa, C, Coll, P, 2014. Laboratory insights into the chemical and kinetic evolution of several organic molecules under simulated Mars surface UV radiation conditions. Icarus 242, 50-63.

Petrosyan, A., Galperin, B., Larsen, S.E., Lewis, S.R., Määttänen, A., Read, P.L., Rennó, N., Rogberg, L.P.H.T., Savijärvi, H., Siili, T., Spiga, A., Toigo, A., Vázquez, L., 2011. The Martian atmospheric boundary layer. Rev. Geophys. 49, RG3005.

Pla-García, J., Rafkin, S.C.R., Kahre, M., Gómez-Elvira, J., Hamilton, V.E., Navarro, S., Torres, J., Marín, M., Vasavada, A., 2016. The Meteorology of Gale Crater as determined from rover environmental monitoring station observations and numerical modeling. Part I: Comparison of model simulations with observations. Icarus 280, 103-113.

Putzig, N.E., Mellon, M.T., 2007. Apparent thermal inertia and the surface heterogeneity of Mars. Icarus 191, 68-94. [OpenAIRE]

Rafkin, S.C.R., Pla-García, J., Kahre, M., Gómez-Elvira, J., Hamilton, V.E., Marín, M., Navarro, S., Torres, J., Vasavada, A., 2016. The meteorology of Gale Crater as determined from rover environmental monitoring station observations and numerical modeling. Part II: interpretation. Icarus 280, 114-138.

Richardson, M.I., Toigo, A.D., Newman, C.E., 2007. PlanetWRF: a general purpose, local to global numerical model for planetary atmospheric and climate dynamics. J. Geophys. Res. 112, E09001. doi:10.1029/2006JE002825. [OpenAIRE]

33 references, page 1 of 3
Any information missing or wrong?Report an Issue