publication . Preprint . Article . 2000

Proof of Classical Versions of the Bousso Entropy Bound and of the Generalized Second Law

Éanna É. Flanagan; Donald Marolf; Robert M. Wald;
Open Access English
  • Published: 27 Sep 2000
Abstract
Bousso has conjectured that in any spacetime satisfying Einstein's equation and satisfying the dominant energy condition, the "entropy flux" S through any null hypersurface L generated by geodesics with non-positive expansion starting from some spacelike 2 surface of area A must satisfy S<=A/4. This conjecture reformulates earlier conjectured entropy bounds of Bekenstein and also of Fischler and Susskind, and can be interpreted as a statement of the so-called holographic principle. We show that Bousso's entropy bound can be derived from either of two sets of hypotheses. The first set of hypotheses is (i) associated with each null surface L in spacetime there is ...
Subjects
free text keywords: High Energy Physics - Theory, General Relativity and Quantum Cosmology, Geodesic, Bekenstein bound, Quantum mechanics, Mathematical physics, Physics, Lambda, Null hypersurface, Geodesics in general relativity, Holographic principle, Pointwise, Particle physics, Integral element
Funded by
NSF| CAREER: Research and Education in Gravitational Wave Astronomy and Gravitation Physics
Project
  • Funder: National Science Foundation (NSF)
  • Project Code: 9722189
  • Funding stream: Directorate for Mathematical & Physical Sciences | Division of Physics
,
NSF| Institute for Theoretical Physics
Project
  • Funder: National Science Foundation (NSF)
  • Project Code: 9407194
  • Funding stream: Directorate for Mathematical & Physical Sciences | Division of Physics
22 references, page 1 of 2

[1] J. D. Bekenstein, Phys. Rev. D 7, 2333 (1973); 23, 287 (1981); 49, 1912 (1994).

[2] W.G. Unruh and R.M. Wald, Phys. Rev. D 25, 942 (1982).

[3] W.G. Unruh and R.M. Wald, Phys. Rev. D 27, 2271 (1983).

[4] M.A. Pelath and R. M. Wald, Phys. Rev. D 60, 104009 (1999) (gr-qc/9901032).

[5] J. D. Bekenstein, gr-qc/9906058.

[6] J. D. Bekenstein and M. Schiffer, Int. J. Mod. Phys. C 1, 355 (1990); J. D. Bekenstein, Phys. Rev. D 30 1669 (1984).

[7] G. 't Hooft, in Quantum Gravity: proceedings, edited by M.A. Markov, V.A. Berezin, and V.P Frolov (World Scientific, Singapore, 1988); J. D. Bekenstein, in Proceedings of the VII Marcel Grossman meeting, edited by xxx, (World Scientific, Singapore, 1996), p. 39-58 (also grqc/9409015); L. Smolin, gr-qc/9508064; S. Corley and T. Jacobson, Phys. Rev. D 53, 6720 (1996).

[8] L. Susskind, J. Math. Phys. 36, 6377 (1995) (hepth/9409089).

[9] R. M. Wald, “The Thermodynamics of Black Holes”, grqc/9912119.

[10] J. D. Bekenstein Phys. Rev. D 9, 3292 (1974).

[11] G. 't Hooft, “Dimensional reduction in quantum gravity”, gr-qc/9310026.

[12] R. Bousso, J. High Energy Phys. 07, 004 (1999) (hepth/9905177).

[13] R. Bousso, J. High Energy Phys. 06, 028 (1999) (hepth/9906022).

[14] W. Fischler and L. Susskind, “Holography and cosmology,” hep-th/9806039.

[15] For other comments on extensions of the original Fischler-Susskind bound [14], see R. Dawid, “Holographic Cosmology and its Relative Degrees of Freedom,” hep-th/9907115.

22 references, page 1 of 2
Powered by OpenAIRE Research Graph
Any information missing or wrong?Report an Issue