publication . Preprint . 2019

Shedding light on biogas: a transparent reactor triggers the development of a biofilm dominated by Rhodopseudomonas faecalis that holds potential for improved biogas production

Christian Abendroth; Adriel Latorre-Perez; Manuel Porcar; Claudia Simeonov; Olaf Luschnig; Cristina Vilanova; Javier Pascual;
Open Access English
  • Published: 16 Jan 2019
  • Publisher: Cold Spring Harbor Laboratory
Abstract
<jats:p>Conventional anaerobic digesters intended for the production of biogas usually operate in complete darkness. Therefore, little is known about the effect of light on microbial communities operating in anaerobic digesters. In the present work, we have studied through 16S rRNA gene amplicon Nanopore sequencing and shotgun metagenomic sequencing the taxonomic and functional structure of the microbial community forming a biofilm on the inner wall of a lab-scale transparent anaerobic biodigester illuminated with natural sunlight. The biofilm was composed of microorganisms involved in the four metabolic processes needed for biogas production. The biofilm proved...
46 references, page 1 of 4

Chun. J, Rainey, F.A. (2014). Integrating genomics into the taxonomy and systematics of the 528 Bacteria and Archaea. Int J Syst Evol Microbiol; 64:316 - 324 530 Ciotola, R.J., Martin, J.F., Tamkin, A., Castańo, J.M., Rosenblum, J., Bisesi, M.S., Lee, J.

(2014). The Influence of loading rate and variable temperatures on microbial communities in 532 anaerobic digesters. Energies; 7: 785 - 803.

534 536 538 540 542 Conklin, A., Stensel, H.D., Ferguson, J. (2006). Growth kinetics and competition between Methanosarcina and Methanosaeta in mesophilic anaerobic digestion. Water Environment Research; 78(5): 486 - 496. [OpenAIRE]

DeSantis, T., Hugenholtz, P., Larsen, N., Rojas, M., Brodie, E., Keller, K., Huber, T., Dalevi, D., Hu, P. and Andersen, G. (2006). Greengenes, a Chimera-Checked 16S rRNA Gene Database and Workbench Compatible with ARB. Appl Environ Microbiol; 72(7): 5069 - 5072.

De Vrieze, J., Hennebel, T., Boon, N., Verstraete, W. (2012). Methanosarcina: The rediscovered methanogen for heavy duty biomethanation. Bioresour Technol; 112: 1 - 9.

De Vrieze, J. (2014). Methanosaeta vs. Methanosarcina in anaerobic digestion: the quest for 546 enhanced biogas production. PhD thesis, Ghent University, Belgium. [OpenAIRE]

548 De Vriezea, J., Christiaens, M.E.R., Walraedt, D., Devooght, A., Ijaz, U.Z., Boon, N. (2017).

Microbial community redundancy in anaerobic digestion drives process recovery after salinity 550 exposure. Water Res; 111: 109 - 117.

Doloman, A., Soboh, Y., Walters, A.J., Sims, R.C., Miller, C.D. (2017): Qualitative analysis of microbial dynamics during anaerobic digestion of microalgal biomass in a UASB reactor. Int J Microbiol; 2017: 5291283. [OpenAIRE]

Gaby JC, Zamanzadeh M, Horn SJ. (2017). The effect of temperature and retention time on methane production and microbial community composition in staged anaerobic digesters fed with food waste. Biotechnol Biofuels; 10:302. [OpenAIRE]

560 Goris, J., Konstantinidis, K.T., Klappenbach, J.A., Coenye, T., Vandamme, P., Tiedje, J.M.

(2007). DNA-DNA hybridization values and their relationship to whole-genome sequence 562 similarities. Int J Syst Evol Microbiol; 57(1):81 - 91.

564 Hanreich, A., Schimpf, U., Zakrzewski, M., Schlüter, A., Benndorf, D., Heyer, R., Rapp, E., 568 Pühler, A., Reichl, U., Klocke, M. (2013) Metagenome and metaproteome analyses of microbial communities in mesophilic biogas-producing anaerobic batch fermentations 570 indicate concerted plant carbohydrate degradation. Syst Appl Microbiol; 36: 330 - 338. [OpenAIRE]

572 Hardegen, J.; Latorre-Pérez, A.; Vilanova, C.; Günther, T.; Porcar, M.; Luschnig, O.; Simeonov, C.; Abendroth, C. (2018) Methanogenic community shifts during the transition 574 from sewage mono-digestion to co-digestion of grass biomass. Bioresour Technol; 265: 275 - 281.

Jeris, J.S., McCarty, P.L. (1965). The biochemistry of methane fermentation Uusing C^sup 578 14^ tracers. J Water Fallut Control Fed; 37: 178 - 192.

46 references, page 1 of 4
Abstract
<jats:p>Conventional anaerobic digesters intended for the production of biogas usually operate in complete darkness. Therefore, little is known about the effect of light on microbial communities operating in anaerobic digesters. In the present work, we have studied through 16S rRNA gene amplicon Nanopore sequencing and shotgun metagenomic sequencing the taxonomic and functional structure of the microbial community forming a biofilm on the inner wall of a lab-scale transparent anaerobic biodigester illuminated with natural sunlight. The biofilm was composed of microorganisms involved in the four metabolic processes needed for biogas production. The biofilm proved...
46 references, page 1 of 4

Chun. J, Rainey, F.A. (2014). Integrating genomics into the taxonomy and systematics of the 528 Bacteria and Archaea. Int J Syst Evol Microbiol; 64:316 - 324 530 Ciotola, R.J., Martin, J.F., Tamkin, A., Castańo, J.M., Rosenblum, J., Bisesi, M.S., Lee, J.

(2014). The Influence of loading rate and variable temperatures on microbial communities in 532 anaerobic digesters. Energies; 7: 785 - 803.

534 536 538 540 542 Conklin, A., Stensel, H.D., Ferguson, J. (2006). Growth kinetics and competition between Methanosarcina and Methanosaeta in mesophilic anaerobic digestion. Water Environment Research; 78(5): 486 - 496. [OpenAIRE]

DeSantis, T., Hugenholtz, P., Larsen, N., Rojas, M., Brodie, E., Keller, K., Huber, T., Dalevi, D., Hu, P. and Andersen, G. (2006). Greengenes, a Chimera-Checked 16S rRNA Gene Database and Workbench Compatible with ARB. Appl Environ Microbiol; 72(7): 5069 - 5072.

De Vrieze, J., Hennebel, T., Boon, N., Verstraete, W. (2012). Methanosarcina: The rediscovered methanogen for heavy duty biomethanation. Bioresour Technol; 112: 1 - 9.

De Vrieze, J. (2014). Methanosaeta vs. Methanosarcina in anaerobic digestion: the quest for 546 enhanced biogas production. PhD thesis, Ghent University, Belgium. [OpenAIRE]

548 De Vriezea, J., Christiaens, M.E.R., Walraedt, D., Devooght, A., Ijaz, U.Z., Boon, N. (2017).

Microbial community redundancy in anaerobic digestion drives process recovery after salinity 550 exposure. Water Res; 111: 109 - 117.

Doloman, A., Soboh, Y., Walters, A.J., Sims, R.C., Miller, C.D. (2017): Qualitative analysis of microbial dynamics during anaerobic digestion of microalgal biomass in a UASB reactor. Int J Microbiol; 2017: 5291283. [OpenAIRE]

Gaby JC, Zamanzadeh M, Horn SJ. (2017). The effect of temperature and retention time on methane production and microbial community composition in staged anaerobic digesters fed with food waste. Biotechnol Biofuels; 10:302. [OpenAIRE]

560 Goris, J., Konstantinidis, K.T., Klappenbach, J.A., Coenye, T., Vandamme, P., Tiedje, J.M.

(2007). DNA-DNA hybridization values and their relationship to whole-genome sequence 562 similarities. Int J Syst Evol Microbiol; 57(1):81 - 91.

564 Hanreich, A., Schimpf, U., Zakrzewski, M., Schlüter, A., Benndorf, D., Heyer, R., Rapp, E., 568 Pühler, A., Reichl, U., Klocke, M. (2013) Metagenome and metaproteome analyses of microbial communities in mesophilic biogas-producing anaerobic batch fermentations 570 indicate concerted plant carbohydrate degradation. Syst Appl Microbiol; 36: 330 - 338. [OpenAIRE]

572 Hardegen, J.; Latorre-Pérez, A.; Vilanova, C.; Günther, T.; Porcar, M.; Luschnig, O.; Simeonov, C.; Abendroth, C. (2018) Methanogenic community shifts during the transition 574 from sewage mono-digestion to co-digestion of grass biomass. Bioresour Technol; 265: 275 - 281.

Jeris, J.S., McCarty, P.L. (1965). The biochemistry of methane fermentation Uusing C^sup 578 14^ tracers. J Water Fallut Control Fed; 37: 178 - 192.

46 references, page 1 of 4
Powered by OpenAIRE Research Graph
Any information missing or wrong?Report an Issue