publication . Other literature type . Article . Preprint . 1996

Left-right symmetry breaking in NJL approach

Akhmedov, Evgeny Kh.; Lindner, Manfred; Schnapka, Erhard; Furtado Valle, José Wagner;
  • Published: 01 Feb 1996
  • Publisher: Elsevier BV
  • Country: Spain
Abstract
We study left-right symmetric models which contain only fermion and gauge boson fields and no elementary scalars. The Higgs bosons are generated dynamically through a set of gauge- and parity-invariant 4-fermion operators. It is shown that in a model with a composite bi-doublet and two triplet scalars there is no parity breaking at low energies, whereas in the model with two doublets instead of two triplets parity is broken automatically regardless of the choice of the parameters of the model. For phenomenologically allowed values of the right-handed scale a tumbling symmetry breaking mechanism is realized in which parity breaking at a high scale $\mu_R$ propaga...
Subjects
arXiv: High Energy Physics::Phenomenology
free text keywords: Nuclear and High Energy Physics, Explicit symmetry breaking, Physics, Higgs field, Spontaneous symmetry breaking, Higgs boson, Higgs mechanism, symbols.namesake, symbols, Symmetry breaking, Particle physics, Gauge boson, Quantum electrodynamics, Chiral symmetry breaking, High Energy Physics - Phenomenology, Física
18 references, page 1 of 2

[1] Y. Nambu, in New Theories in Physics, Proc. XI Int. Symposium on Elementary Particle Physics, eds. Z. Ajduk, S. Pokorski and A. Trautman (World Scientific, Singapore, 1989) and EFI report No. 89-08 (1989), unpublished.

[2] A. Miransky, M. Tanabashi, K. Yamawaki, Mod. Phys. Lett. A4 (1989) 1043; Phys. Lett. B221 (1989) 177.

[3] W.A. Bardeen, C.T. Hill, M. Lindner, Phys. Rev. D41 (1990) 1647.

[4] W.J. Marciano, Phys. Rev. Lett. 62 (1989) 2793.

[5] V.G. Vaks, A.I. Larkin, Sov. Phys. JETP 13 (1961) 192.

[6] Y. Nambu, G. Jona-Lasinio, Phys. Rev. 122 (1961) 345.

[7] A. Blumhofer, Phys. Lett. B320 (1994) 352; Nucl. Phys. B437 (1995) 25.

[8] J.C. Pati, A. Salam, Phys. Rev. D10 (1975) 275; R.N. Mohapatra, J.C. Pati, Phys. Rev. D11 (1975) 566; 2558; G. Senjanovi´c, R.N. Mohapatra, Phys. Rev. D12 (1975) 1502.

[9] R.N. Mohapatra, G. Senjanovi´c, Phys. Rev. Lett. 44 (1980) 912; Phys. Rev. D23 (1981) 165.

[10] E.Kh. Akhmedov, M. Lindner, E. Schnapka, J.W.F. Valle, in preparation.

[11] T. Eguchi, Phys. Rev. D14 (1976) 2755; F. Cooper, G. Guralnik, N. Snyderman, Phys. Rev. Lett. 40 (1978) 1620.

[12] G. Senjanovi´c, R.N. Mohapatra, ref. [8]

[13] D. Wyler, L. Wolfenstein, Nucl. Phys. B218 (1983) 205.

[14] See, e.g., G. Senjanovi´c, Nucl. Phys. B153 (1979) 334; C.S. Lim, T. Inami, Prog. Theor. Phys. 67 (1982) 1569; F.I. Olness, M.E. Ebel, Phys. Rev. D32 (1985) 1769; J.F. Gunion, J. Grifols, A. Mendez, B. Kayser, F. Olness, Phys. Rev. D40 (1989) 1546.

[15] CDF collaboration: F. Abe et al., Phys. Rev. Lett. 74 (1995) 2626.

18 references, page 1 of 2
Abstract
We study left-right symmetric models which contain only fermion and gauge boson fields and no elementary scalars. The Higgs bosons are generated dynamically through a set of gauge- and parity-invariant 4-fermion operators. It is shown that in a model with a composite bi-doublet and two triplet scalars there is no parity breaking at low energies, whereas in the model with two doublets instead of two triplets parity is broken automatically regardless of the choice of the parameters of the model. For phenomenologically allowed values of the right-handed scale a tumbling symmetry breaking mechanism is realized in which parity breaking at a high scale $\mu_R$ propaga...
Subjects
arXiv: High Energy Physics::Phenomenology
free text keywords: Nuclear and High Energy Physics, Explicit symmetry breaking, Physics, Higgs field, Spontaneous symmetry breaking, Higgs boson, Higgs mechanism, symbols.namesake, symbols, Symmetry breaking, Particle physics, Gauge boson, Quantum electrodynamics, Chiral symmetry breaking, High Energy Physics - Phenomenology, Física
18 references, page 1 of 2

[1] Y. Nambu, in New Theories in Physics, Proc. XI Int. Symposium on Elementary Particle Physics, eds. Z. Ajduk, S. Pokorski and A. Trautman (World Scientific, Singapore, 1989) and EFI report No. 89-08 (1989), unpublished.

[2] A. Miransky, M. Tanabashi, K. Yamawaki, Mod. Phys. Lett. A4 (1989) 1043; Phys. Lett. B221 (1989) 177.

[3] W.A. Bardeen, C.T. Hill, M. Lindner, Phys. Rev. D41 (1990) 1647.

[4] W.J. Marciano, Phys. Rev. Lett. 62 (1989) 2793.

[5] V.G. Vaks, A.I. Larkin, Sov. Phys. JETP 13 (1961) 192.

[6] Y. Nambu, G. Jona-Lasinio, Phys. Rev. 122 (1961) 345.

[7] A. Blumhofer, Phys. Lett. B320 (1994) 352; Nucl. Phys. B437 (1995) 25.

[8] J.C. Pati, A. Salam, Phys. Rev. D10 (1975) 275; R.N. Mohapatra, J.C. Pati, Phys. Rev. D11 (1975) 566; 2558; G. Senjanovi´c, R.N. Mohapatra, Phys. Rev. D12 (1975) 1502.

[9] R.N. Mohapatra, G. Senjanovi´c, Phys. Rev. Lett. 44 (1980) 912; Phys. Rev. D23 (1981) 165.

[10] E.Kh. Akhmedov, M. Lindner, E. Schnapka, J.W.F. Valle, in preparation.

[11] T. Eguchi, Phys. Rev. D14 (1976) 2755; F. Cooper, G. Guralnik, N. Snyderman, Phys. Rev. Lett. 40 (1978) 1620.

[12] G. Senjanovi´c, R.N. Mohapatra, ref. [8]

[13] D. Wyler, L. Wolfenstein, Nucl. Phys. B218 (1983) 205.

[14] See, e.g., G. Senjanovi´c, Nucl. Phys. B153 (1979) 334; C.S. Lim, T. Inami, Prog. Theor. Phys. 67 (1982) 1569; F.I. Olness, M.E. Ebel, Phys. Rev. D32 (1985) 1769; J.F. Gunion, J. Grifols, A. Mendez, B. Kayser, F. Olness, Phys. Rev. D40 (1989) 1546.

[15] CDF collaboration: F. Abe et al., Phys. Rev. Lett. 74 (1995) 2626.

18 references, page 1 of 2
Powered by OpenAIRE Research Graph
Any information missing or wrong?Report an Issue