publication . Article . Preprint . 2019

NuOscProbExact: a general-purpose code to compute exact two-flavor and three-flavor neutrino oscillation probabilities

Mauricio Bustamante;
Open Access
  • Published: 28 Apr 2019
Abstract
In neutrino oscillations, a neutrino created with one flavor can be later detected with a different flavor, with some probability. In general, the probability is computed exactly by diagonalizing the Hamiltonian operator that describes the physical system and that drives the oscillations. Here we use an alternative method developed by Ohlsson & Snellman to compute exact oscillation probabilities, that bypasses diagonalization, and that produces expressions for the probabilities that are straightforward to implement. The method employs expansions of quantum operators in terms of SU(2) and SU(3) matrices. We implement the method in the code NuOscProbExact, which w...
Subjects
arXiv: High Energy Physics::Experiment
free text keywords: High Energy Physics - Phenomenology, Astrophysics - High Energy Astrophysical Phenomena, High Energy Physics - Experiment
Related Organizations
168 references, page 1 of 12

mbustamante@nbi.ku.dk; ORCID: 0000-0001-6923-

0865 [1] B. Pontecorvo, Sov. Phys. JETP 26, 984 (1968), [Zh.

Eksp. Teor. Fiz. 53, 1717 (1967)]. [2] V. D. Barger, K. Whisnant, and R. J. N. Phillips, Phys.

Rev. D 22, 1636 (1980). [3] S. M. Bilenky, Proc. Roy. Soc. Lond. A 460, 403 (2004). [4] G. Fantini, A. Gallo Rosso, F. Vissani, and V. Zema,

Adv. Ser. Direct. High Energy Phys. 28, 37 (2018),

arXiv:1802.05781 [hep-ph]. [5] T. Kajita, Rev. Mod. Phys. 88, 030501 (2016). [6] A. B. McDonald, Rev. Mod. Phys. 88, 030502 (2016). [7] B. Kayser, Phys. Rev. D 24, 110 (1981). [8] C. Giunti and C. W. Kim, Fundamentals of Neutrino

Physics and Astrophysics (2007). [9] M. Tanabashi et al. (Particle Data Group), Phys. Rev.

D 98, 030001 (2018). [10] V. D. Barger, K. Whisnant, S. Pakvasa, and R. J. N.

Phillips, Phys. Rev. D 22, 2718 (1980), [, 300 (1980)]. [11] S. T. Petcov, Phys. Lett. B 200, 373 (1988). [12] H. W. Zaglauer and K. H. Schwarzer, Z. Phys. C 40,

273 (1988). [13] E. Torrente Lujan, Phys. Rev. D 53, 4030 (1996),

arXiv:hep-ph/9505209 [hep-ph]. [14] A. B. Balantekin, Phys. Rev. D 58, 013001 (1998),

arXiv:hep-ph/9712304 [hep-ph]. [15] S. R. Coleman and S. L. Glashow, Phys. Rev. D 59,

116008 (1999), arXiv:hep-ph/9812418 [hep-ph]. [16] A. M. Gago, M. M. Guzzo, H. Nunokawa, W. J. C.

Teves, and R. Zukanovich Funchal, Phys. Rev. D 64,

073003 (2001), arXiv:hep-ph/0105196 [hep-ph]. [17] K. Kimura, A. Takamura, and H. Yokomakura, Phys.

168 references, page 1 of 12
Abstract
In neutrino oscillations, a neutrino created with one flavor can be later detected with a different flavor, with some probability. In general, the probability is computed exactly by diagonalizing the Hamiltonian operator that describes the physical system and that drives the oscillations. Here we use an alternative method developed by Ohlsson & Snellman to compute exact oscillation probabilities, that bypasses diagonalization, and that produces expressions for the probabilities that are straightforward to implement. The method employs expansions of quantum operators in terms of SU(2) and SU(3) matrices. We implement the method in the code NuOscProbExact, which w...
Subjects
arXiv: High Energy Physics::Experiment
free text keywords: High Energy Physics - Phenomenology, Astrophysics - High Energy Astrophysical Phenomena, High Energy Physics - Experiment
Related Organizations
168 references, page 1 of 12

mbustamante@nbi.ku.dk; ORCID: 0000-0001-6923-

0865 [1] B. Pontecorvo, Sov. Phys. JETP 26, 984 (1968), [Zh.

Eksp. Teor. Fiz. 53, 1717 (1967)]. [2] V. D. Barger, K. Whisnant, and R. J. N. Phillips, Phys.

Rev. D 22, 1636 (1980). [3] S. M. Bilenky, Proc. Roy. Soc. Lond. A 460, 403 (2004). [4] G. Fantini, A. Gallo Rosso, F. Vissani, and V. Zema,

Adv. Ser. Direct. High Energy Phys. 28, 37 (2018),

arXiv:1802.05781 [hep-ph]. [5] T. Kajita, Rev. Mod. Phys. 88, 030501 (2016). [6] A. B. McDonald, Rev. Mod. Phys. 88, 030502 (2016). [7] B. Kayser, Phys. Rev. D 24, 110 (1981). [8] C. Giunti and C. W. Kim, Fundamentals of Neutrino

Physics and Astrophysics (2007). [9] M. Tanabashi et al. (Particle Data Group), Phys. Rev.

D 98, 030001 (2018). [10] V. D. Barger, K. Whisnant, S. Pakvasa, and R. J. N.

Phillips, Phys. Rev. D 22, 2718 (1980), [, 300 (1980)]. [11] S. T. Petcov, Phys. Lett. B 200, 373 (1988). [12] H. W. Zaglauer and K. H. Schwarzer, Z. Phys. C 40,

273 (1988). [13] E. Torrente Lujan, Phys. Rev. D 53, 4030 (1996),

arXiv:hep-ph/9505209 [hep-ph]. [14] A. B. Balantekin, Phys. Rev. D 58, 013001 (1998),

arXiv:hep-ph/9712304 [hep-ph]. [15] S. R. Coleman and S. L. Glashow, Phys. Rev. D 59,

116008 (1999), arXiv:hep-ph/9812418 [hep-ph]. [16] A. M. Gago, M. M. Guzzo, H. Nunokawa, W. J. C.

Teves, and R. Zukanovich Funchal, Phys. Rev. D 64,

073003 (2001), arXiv:hep-ph/0105196 [hep-ph]. [17] K. Kimura, A. Takamura, and H. Yokomakura, Phys.

168 references, page 1 of 12
Any information missing or wrong?Report an Issue