publication . Article . 2014

Multicellularity in green algae: upsizing in a walled complex

Domozych, David S.; Domozych, Catherine E.;
Open Access
  • Published: 18 Nov 2014
  • Publisher: Frontiers Media SA
Abstract
Modern green algae constitute a large and diverse taxonomic assemblage that encompasses many multicellular phenotypes including colonial, filamentous and parenchymatous forms. In all multicellular green algae, each cell is surrounded by an extracellular matrix, most often in the form of a cell wall. Volvocalean taxa like Volvox have an elaborate, gel-like, hydroxyproline rich glycoprotein covering that contains the cells of the colony. In “ulvophytes”, uronic acid-rich and sulfated polysaccharides are the likely adhesion agents that maintain the multicellular habit. Charophytes also produce polysaccharide-rich cell walls and in late divergent taxa, pectin plays ...
Subjects
free text keywords: Plant Science, cell wall, extracellular matrix, multicellularity, pectin, glycoprotein, cytokinesis, Plant culture, SB1-1110, Review Article
Related Organizations
Funded by
NSF| MRI: Acquisition of a Libra 120 transmission electron microscope for research enhancement at Skidmore College
Project
  • Funder: National Science Foundation (NSF)
  • Project Code: 0922805
  • Funding stream: Directorate for Biological Sciences | Division of Biological Infrastructure
,
NSF| MRI: Acquisition of a confocal laser scanning microscope for research in the life sciences at Skidmore College
Project
  • Funder: National Science Foundation (NSF)
  • Project Code: 1337280
  • Funding stream: Directorate for Biological Sciences | Division of Biological Infrastructure
,
NSF| RUI: The cell biology of pectin dynamics in the Charophycean Green Algae: Homogalacturonan secretion in the model organism, Penium margaritaceum
Project
  • Funder: National Science Foundation (NSF)
  • Project Code: 0919925
  • Funding stream: Directorate for Biological Sciences | Division of Molecular & Cellular Biosciences
84 references, page 1 of 6

Abedin M. King N. (2010). Diverse evolutionary paths to cell adhesion. Trends Cell Biol. 20 734–742. 10.1016/j.tcb.2010.08.002 [OpenAIRE] [DOI]

Agoda-Tandjawa G. Durand S. Gaillard C. Garnier C. Doublier J. L. (2012). Properties of cellulose/pectin composites: implications for structural and mechanical properties of cell wall. Carbohydr. Polym. 90 1081–1091. 10.1016/j.carbpol.2012.06.047 [OpenAIRE] [DOI]

Bashline L. Lei L. Li S. Gu Y. (2014). Cell wall, cytoskeleton, and cell expansion in higher plants. Mol. Plant 7 586–600. 10.1093/mp/ssu018 [OpenAIRE] [DOI]

Bennici A. (2008). Origin and early evolution of land plants. Problems and considerations. Commun. Integr. Biol. 1 212–218. 10.4161/cib.1.2.6987 [OpenAIRE] [DOI]

Blaby I. K. Blaby-Haas C. E. Tourasse N. Hom E. F. Lopez D. Aksoy M. (2014). The Chlamydomonas genome project: a decade on. Trends Plant Sci. 19 672–680. 10.1016/j.tplants.2014.05.008 [OpenAIRE] [DOI]

Bobin-Dubigeon C. Lahaye M. Guillon F. Barry J. L. Gallant D. J. (1997). Factor limiting the biodegredation of Ulva sp cell-wall polysaccharides. J. Sci. Food Agric. 75 341–351. 10.1002/(SICI)1097-0010(199711)75:3<341::AID-JSFA888>3.0.CO;2-B [OpenAIRE] [DOI]

Burton R. A. Gidley M. J. Fincher G. B. (2010). Heterogeneity in the chemistry, structure and function of plant cell walls. Nat. Chem. Biol. 6 724–732. 10.1038/nchembio.439 [OpenAIRE] [DOI]

Caffall K. H. Mohnen D. (2009). The structure, function, and biosynthesis of plant cell wall pectic polysaccharides. Carbohydr. Res. 344 1879–1900. 10.1016/j.carres.2009.05.021 [OpenAIRE] [DOI]

Ciancia M. Alberghina J. Arata P. X. Benevides H. Leliaert F. Verbruggen H. (2012). Characetrization of cell wall polysaccharides of the coenocytic green seaweed Bryopsis plumosa (Bryopsidaceae, Chlorophyta) from the Argentine coast. J. Phycol. 48 326–355. 10.1111/j.1529-8817.2012.01131.x [OpenAIRE] [DOI]

Cocquyt E. Verbruggen H. Leliaert F. De Clerck O. (2010). Evolution and cytological diversification of green seaweeds (Ulvophyceae). Mol. Biol. Evol. 27 2052–2061. 10.1093/molbev/msq091 [OpenAIRE] [DOI]

Cook M. E. Graham L. E. (1999). “Evolution of plasmodesmata,” in Plasmodesmata: Nanochannels with Megatasks eds van Bel A. J. E. van Kesteren W. J. P. (Berlin, NY: Springer).

Cosgrove D. J. (2005). Growth of the plant cell wall. Nat. Rev. Mol. Cell Biol. 6 850–861. 10.1038/nrm1746 [OpenAIRE] [DOI]

Cosgrove D. J. Jarvis M. J. (2012). Comparative structure and biomechanics of plant primary and secondary cell walls. Front. Plant Sci. 3:204. 10.3389/fpls.2012.00204 [DOI]

Delaux P.-M. Xie X. Timme R. E. Puech-Pages V. Dunand C. Lecompte E. (2012). Origin of strigolactones in the green lineage. New Phytol. 195 857–871. 10.1111/j.1469-8137.2012.04209.x [OpenAIRE] [DOI]

De Smet I. Vob U. Lau S. Wilson M. Shao N. Timme R. E. (2010). Unraveling the evolution of auxin signaling. Plant Physiol. 155 209–221. 10.1104/pp.110.168161 [OpenAIRE] [DOI]

84 references, page 1 of 6
Abstract
Modern green algae constitute a large and diverse taxonomic assemblage that encompasses many multicellular phenotypes including colonial, filamentous and parenchymatous forms. In all multicellular green algae, each cell is surrounded by an extracellular matrix, most often in the form of a cell wall. Volvocalean taxa like Volvox have an elaborate, gel-like, hydroxyproline rich glycoprotein covering that contains the cells of the colony. In “ulvophytes”, uronic acid-rich and sulfated polysaccharides are the likely adhesion agents that maintain the multicellular habit. Charophytes also produce polysaccharide-rich cell walls and in late divergent taxa, pectin plays ...
Subjects
free text keywords: Plant Science, cell wall, extracellular matrix, multicellularity, pectin, glycoprotein, cytokinesis, Plant culture, SB1-1110, Review Article
Related Organizations
Funded by
NSF| MRI: Acquisition of a Libra 120 transmission electron microscope for research enhancement at Skidmore College
Project
  • Funder: National Science Foundation (NSF)
  • Project Code: 0922805
  • Funding stream: Directorate for Biological Sciences | Division of Biological Infrastructure
,
NSF| MRI: Acquisition of a confocal laser scanning microscope for research in the life sciences at Skidmore College
Project
  • Funder: National Science Foundation (NSF)
  • Project Code: 1337280
  • Funding stream: Directorate for Biological Sciences | Division of Biological Infrastructure
,
NSF| RUI: The cell biology of pectin dynamics in the Charophycean Green Algae: Homogalacturonan secretion in the model organism, Penium margaritaceum
Project
  • Funder: National Science Foundation (NSF)
  • Project Code: 0919925
  • Funding stream: Directorate for Biological Sciences | Division of Molecular & Cellular Biosciences
84 references, page 1 of 6

Abedin M. King N. (2010). Diverse evolutionary paths to cell adhesion. Trends Cell Biol. 20 734–742. 10.1016/j.tcb.2010.08.002 [OpenAIRE] [DOI]

Agoda-Tandjawa G. Durand S. Gaillard C. Garnier C. Doublier J. L. (2012). Properties of cellulose/pectin composites: implications for structural and mechanical properties of cell wall. Carbohydr. Polym. 90 1081–1091. 10.1016/j.carbpol.2012.06.047 [OpenAIRE] [DOI]

Bashline L. Lei L. Li S. Gu Y. (2014). Cell wall, cytoskeleton, and cell expansion in higher plants. Mol. Plant 7 586–600. 10.1093/mp/ssu018 [OpenAIRE] [DOI]

Bennici A. (2008). Origin and early evolution of land plants. Problems and considerations. Commun. Integr. Biol. 1 212–218. 10.4161/cib.1.2.6987 [OpenAIRE] [DOI]

Blaby I. K. Blaby-Haas C. E. Tourasse N. Hom E. F. Lopez D. Aksoy M. (2014). The Chlamydomonas genome project: a decade on. Trends Plant Sci. 19 672–680. 10.1016/j.tplants.2014.05.008 [OpenAIRE] [DOI]

Bobin-Dubigeon C. Lahaye M. Guillon F. Barry J. L. Gallant D. J. (1997). Factor limiting the biodegredation of Ulva sp cell-wall polysaccharides. J. Sci. Food Agric. 75 341–351. 10.1002/(SICI)1097-0010(199711)75:3<341::AID-JSFA888>3.0.CO;2-B [OpenAIRE] [DOI]

Burton R. A. Gidley M. J. Fincher G. B. (2010). Heterogeneity in the chemistry, structure and function of plant cell walls. Nat. Chem. Biol. 6 724–732. 10.1038/nchembio.439 [OpenAIRE] [DOI]

Caffall K. H. Mohnen D. (2009). The structure, function, and biosynthesis of plant cell wall pectic polysaccharides. Carbohydr. Res. 344 1879–1900. 10.1016/j.carres.2009.05.021 [OpenAIRE] [DOI]

Ciancia M. Alberghina J. Arata P. X. Benevides H. Leliaert F. Verbruggen H. (2012). Characetrization of cell wall polysaccharides of the coenocytic green seaweed Bryopsis plumosa (Bryopsidaceae, Chlorophyta) from the Argentine coast. J. Phycol. 48 326–355. 10.1111/j.1529-8817.2012.01131.x [OpenAIRE] [DOI]

Cocquyt E. Verbruggen H. Leliaert F. De Clerck O. (2010). Evolution and cytological diversification of green seaweeds (Ulvophyceae). Mol. Biol. Evol. 27 2052–2061. 10.1093/molbev/msq091 [OpenAIRE] [DOI]

Cook M. E. Graham L. E. (1999). “Evolution of plasmodesmata,” in Plasmodesmata: Nanochannels with Megatasks eds van Bel A. J. E. van Kesteren W. J. P. (Berlin, NY: Springer).

Cosgrove D. J. (2005). Growth of the plant cell wall. Nat. Rev. Mol. Cell Biol. 6 850–861. 10.1038/nrm1746 [OpenAIRE] [DOI]

Cosgrove D. J. Jarvis M. J. (2012). Comparative structure and biomechanics of plant primary and secondary cell walls. Front. Plant Sci. 3:204. 10.3389/fpls.2012.00204 [DOI]

Delaux P.-M. Xie X. Timme R. E. Puech-Pages V. Dunand C. Lecompte E. (2012). Origin of strigolactones in the green lineage. New Phytol. 195 857–871. 10.1111/j.1469-8137.2012.04209.x [OpenAIRE] [DOI]

De Smet I. Vob U. Lau S. Wilson M. Shao N. Timme R. E. (2010). Unraveling the evolution of auxin signaling. Plant Physiol. 155 209–221. 10.1104/pp.110.168161 [OpenAIRE] [DOI]

84 references, page 1 of 6
Powered by OpenAIRE Research Graph
Any information missing or wrong?Report an Issue