publication . Other literature type . Article . 2014

BDNF signaling and survival of striatal neurons

Baydyuk, Maryna; Xu, Baoji;
Open Access
  • Published: 28 Aug 2014
  • Publisher: Frontiers Media SA
Abstract
The striatum, a major component of the basal ganglia, performs multiple functions including control of movement, reward, and addiction. Dysfunction and death of striatal neurons are the main causes for the motor disorders associated with Huntington’s disease (HD). Brain-derived neurotrophic factor (BDNF), a member of the neurotrophin family, is among factors that promote survival and proper function of this neuronal population. Here, we review recent studies showing that BDNF determines the size of the striatum by supporting survival of the immature striatal neurons at their origin, promotes maturation of striatal neurons, and facilitates establishment of striat...
Subjects
Medical Subject Headings: nervous system
free text keywords: Neuroscience, Review Article, neurotrophins, BDNF, TrkB, striatum, Huntington’s disease, DRD1a, DRD2, dopaminergic neurons, Neurosciences. Biological psychiatry. Neuropsychiatry, RC321-571
Funded by
NIH| Roles of BDNF in Striatal Neurons and Relevance to HD
Project
  • Funder: National Institutes of Health (NIH)
  • Project Code: 5R01NS050596-02
  • Funding stream: NATIONAL INSTITUTE OF NEUROLOGICAL DISORDERS AND STROKE
106 references, page 1 of 8

Aid T. Kazantseva A. Piirsoo M. Palm K. Timmusk T. (2007). Mouse and rat BDNF gene structure and expression revisited. J. Neurosci. Res. 85, 525–535. 10.1002/jnr.21139 17149751 [OpenAIRE] [PubMed] [DOI]

Alcántara S. Frisén J. Del Río J. A. Soriano E. Barbacid M. Silos-Santiago I. (1997). TrkB signaling is required for postnatal survival of CNS neurons and protects hippocampal and motor neurons from axotomy-induced cell death. J. Neurosci. 17, 3623–3633. 9133385 [OpenAIRE] [PubMed]

Altar C. A. Cai N. Bliven T. Juhasz M. Conner J. M. Acheson A. L. . (1997). Anterograde transport of brain-derived neurotrophic factor and its role in the brain. Nature 389, 856–860. 10.1038/39885 9349818 [OpenAIRE] [PubMed] [DOI]

Anderson S. A. Qiu M. Bulfone A. Eisenstat D. D. Meneses J. Pedersen R. . (1997). Mutations of the homeobox genes Dlx-1 and Dlx-2 disrupt the striatal subventricular zone and differentiation of late born striatal neurons. Neuron 19, 27–37. 10.1016/s0896-6273(00)80345-1 9247261 [OpenAIRE] [PubMed] [DOI]

Apostol B. L. Simmons D. A. Zuccato C. Illes K. Pallos J. Casale M. . (2008). CEP-1347 reduces mutant huntingtin-associated neurotoxicity and restores BDNF levels in R6/2 mice. Mol. Cell. Neurosci. 39, 8–20. 10.1016/j.mcn.2008.04.007 18602275 [OpenAIRE] [PubMed] [DOI]

Baquet Z. C. Gorski J. A. Jones K. R. (2004). Early striatal dendrite deficits followed by neuron loss with advanced age in the absence of anterograde cortical brain-derived neurotrophic factor. J. Neurosci. 24, 4250–4258. 10.1523/jneurosci.3920-03.2004 15115821 [OpenAIRE] [PubMed] [DOI]

Bartkowska K. Paquin A. Gauthier A. S. Kaplan D. R. Miller F. D. (2007). Trk signaling regulates neural precursor cell proliferation and differentiation during cortical development. Development 134, 4369–4380. 10.1242/dev.008227 18003743 [OpenAIRE] [PubMed] [DOI]

Bath K. G. Akins M. R. Lee F. S. (2011). BDNF control of adult SVZ neurogenesis. Dev. Psychobiol. 54, 578–589. 10.1002/dev.20546 21432850 [OpenAIRE] [PubMed] [DOI]

Baydyuk M. Russell T. Liao G. Y. Zang K. An J. J. Reichardt L. F. . (2011). TrkB receptor controls striatal formation by regulating the number of newborn striatal neurons. Proc. Natl. Acad. Sci. U S A 108, 1669–1674. 10.1073/pnas.1004744108 21205893 [OpenAIRE] [PubMed] [DOI]

Baydyuk M. Xie Y. Tessarollo L. Xu B. (2013). Midbrain-derived neurotrophins support survival of immature striatal projection neurons. J. Neurosci. 33, 3363–3369. 10.1523/JNEUROSCI.3687-12.2013 23426664 [OpenAIRE] [PubMed] [DOI]

Besusso D. Geibel M. Kramer D. Schneider T. Pendolino V. Picconi B. . (2013). BDNF-TrkB signaling in striatopallidal neurons controls inhibition of locomotor behavior. Nat. Commun. 4:2031. 10.1038/ncomms3031 23774276 [OpenAIRE] [PubMed] [DOI]

Bhave S. V. Ghoda L. Hoffman P. L. (1999). Brain-derived neurotrophic factor mediates the anti-apoptotic effect of NMDA in cerebellar granule neurons: signal transduction cascades and site of ethanol action. J. Neurosci. 19, 3277–3286. 10212287 [OpenAIRE] [PubMed]

Block-Galarza J. Chase K. O. Sapp E. Vaughn K. T. Vallee R. B. DiFiglia M. . (1997). Fast transport and retrograde movement of huntingtin and HAP 1 in axons. Neuroreport 8, 2247–2251. 10.1097/00001756-199707070-00031 9243620 [OpenAIRE] [PubMed] [DOI]

Bolam J. P. Hanley J. J. Booth P. A. Bevan M. D. (2000). Synaptic organisation of the basal ganglia. J. Anat. 196, 527–542. 10.1046/j.1469-7580.2000.19640527.x 10923985 [OpenAIRE] [PubMed] [DOI]

Borrell-Pagès M. Zala D. Humbert S. Saudou F. (2006). Huntington’s disease: from huntingtin function and dysfunction to therapeutic strategi es. Cell. Mol. Life Sci. 63, 2642–2660. 10.1007/s00018-006-6242-0 17041811 [OpenAIRE] [PubMed] [DOI]

106 references, page 1 of 8
Powered by OpenAIRE Research Graph
Any information missing or wrong?Report an Issue