publication . Article . 2019

Testing the Effect of Mountain Ranges as a Physical Barrier to Current Gene Flow and Environmentally Dependent Adaptive Divergence in Cunninghamia konishii (Cupressaceae).

Chung-Te Chang;
Open Access
  • Published: 01 Aug 2019 Journal: Frontiers in Genetics, volume 10 (eissn: 1664-8021, Copyright policy)
  • Publisher: Frontiers Media SA
Abstract
Populations can be genetically isolated by differences in their ecology or environment that hampered efficient migration, or they may be isolated solely by geographic distance. Moreover, mountain ranges across a species’ distribution area might have acted as barriers to gene flow. Genetic variation was quantified using amplified fragment length polymorphism (AFLP) and 13 selective amplification primer combinations used generated a total of 482 fragments. Here, we tested the barrier effects of mountains on gene flow and environmentally dependent local adaptation of Cunninghamia konishii occur in Taiwan. A pattern of genetic isolation by distance was not found and...
Subjects
free text keywords: Genetics(clinical), Molecular Medicine, Genetics, AFLP, barriers to gene flow, conservation, Cunninghamia konishii, mountain ranges, QH426-470, Original Research
121 references, page 1 of 9

Agapow P. M.Burt A. (2001). Indices of multilocus linkage disequilibrium. Mol. Ecol. Notes 1, 101–102. 10.1046/j.1471-8278.2000.00014.x [OpenAIRE] [DOI]

Aitken S. N.Bemmels J. B. (2016). Time to get moving: assisted gene flow of forest trees. Evol. Appl. 9, 271–290. 10.1111/eva.12293 27087852 [OpenAIRE] [PubMed] [DOI]

Aitken S. N.Whitlock M. C. (2013). Assisted gene flow to facilitate local adaptation to climate change. Annu. Rev. Ecol. Evol. Syst. 44, 367–388. 10.1146/annurev-ecolsys-110512-135747 [OpenAIRE] [DOI]

Aitken S. N.Yeaman S.Holliday J. A.Wang T.Curtis-McLane S. (2008). Adaptation, migration or extirpation: climate change outcomes for tree populations. Evol. Appl. 1, 95–111. 10.1111/j.1752-4571.2007.00013.x 25567494 [OpenAIRE] [PubMed] [DOI]

Allendorf F. W.Hohenlohe P. A.Luikart G. (2010). Genomics and the future of conservation genetics. Nat. Rev. Genet. 11, 697–709. 10.1038/nrg2844 20847747 [OpenAIRE] [PubMed] [DOI]

Allendorf F. W.Luikart G.Aitken S., (2013). Conservation and the genetics of populations. 2nd Edn Chichester: Wiley-Blackwell.

Antonelli A. (2017). Biogeography: drivers of bioregionalization. Nat. Ecol. Evol. 1, 0114. 10.1038/s41559-017-0114 [OpenAIRE] [DOI]

Barrett R. D. H.Schluter D. (2008). Adaptation from standing genetic variation. Trends Ecol. Evol. 23, 38–44. 10.1016/j.tree.2007.09.008 18006185 [OpenAIRE] [PubMed] [DOI]

Bates D.Maechler M.Bolker B.Walker S. (2015). Fitting linear mixed-effects models using lme4. J. Stat. Soft. 67, 1–48. 10.18637/jss.v067.i01 [OpenAIRE] [DOI]

Beaumont M. A.Nichols R. A. (1996). Evaluating loci for use in the genetic analysis of population structure. Proc. Roy. Soc. B-Biol. Sci. 263, 1619–1626. 10.1098/rspb.1996.0237 [OpenAIRE] [DOI]

Bennie J.Huntley B.Wiltshire A.Hill M. O.Baxter R. (2008). Slope, aspect and climate: spatially explicit and implicit models of topographic microclimate in chalk grassland. Ecol. Model. 216, 47–59. 10.1016/j.ecolmodel.2008.04.010 [OpenAIRE] [DOI]

Bonin A.Bellemain E.Bronken E. P.Pompanon F.Brochmann C.Taberlet P. (2004). How to track and assess genotyping errors in population genetics studies. Mol. Ecol. 13, 3261–3273. 10.1111/j.1365-294X.2004.02346.x 15487987 [OpenAIRE] [PubMed] [DOI]

Borcard D.Legendre P. (2002). All-scale spatial analysis of ecological data by means of principal coordinates of neighbor matrices. Ecol. Model. 153, 51–68. 10.1016/S0304-3800(01)00501-4 [OpenAIRE] [DOI]

Borcard D.Legendre P.Drapeau P. (1992). Partialling out the spatial component of ecological variation. Ecology 73, 1045–1055. 10.2307/1940179 [OpenAIRE] [DOI]

Bothwell H.Bisbing S.Therkildsen N. O.Crawford L.Alvarez N.Holderegger R. (2013). Identifying genetic signatures of selection in a non-model species, alpine gentian (Gentiana nivalis L.), using a landscape genetic approach. Conser. Genet. 14, 467–481. 10.1007/s10592-012-0411-5 [OpenAIRE] [DOI]

121 references, page 1 of 9
Abstract
Populations can be genetically isolated by differences in their ecology or environment that hampered efficient migration, or they may be isolated solely by geographic distance. Moreover, mountain ranges across a species’ distribution area might have acted as barriers to gene flow. Genetic variation was quantified using amplified fragment length polymorphism (AFLP) and 13 selective amplification primer combinations used generated a total of 482 fragments. Here, we tested the barrier effects of mountains on gene flow and environmentally dependent local adaptation of Cunninghamia konishii occur in Taiwan. A pattern of genetic isolation by distance was not found and...
Subjects
free text keywords: Genetics(clinical), Molecular Medicine, Genetics, AFLP, barriers to gene flow, conservation, Cunninghamia konishii, mountain ranges, QH426-470, Original Research
121 references, page 1 of 9

Agapow P. M.Burt A. (2001). Indices of multilocus linkage disequilibrium. Mol. Ecol. Notes 1, 101–102. 10.1046/j.1471-8278.2000.00014.x [OpenAIRE] [DOI]

Aitken S. N.Bemmels J. B. (2016). Time to get moving: assisted gene flow of forest trees. Evol. Appl. 9, 271–290. 10.1111/eva.12293 27087852 [OpenAIRE] [PubMed] [DOI]

Aitken S. N.Whitlock M. C. (2013). Assisted gene flow to facilitate local adaptation to climate change. Annu. Rev. Ecol. Evol. Syst. 44, 367–388. 10.1146/annurev-ecolsys-110512-135747 [OpenAIRE] [DOI]

Aitken S. N.Yeaman S.Holliday J. A.Wang T.Curtis-McLane S. (2008). Adaptation, migration or extirpation: climate change outcomes for tree populations. Evol. Appl. 1, 95–111. 10.1111/j.1752-4571.2007.00013.x 25567494 [OpenAIRE] [PubMed] [DOI]

Allendorf F. W.Hohenlohe P. A.Luikart G. (2010). Genomics and the future of conservation genetics. Nat. Rev. Genet. 11, 697–709. 10.1038/nrg2844 20847747 [OpenAIRE] [PubMed] [DOI]

Allendorf F. W.Luikart G.Aitken S., (2013). Conservation and the genetics of populations. 2nd Edn Chichester: Wiley-Blackwell.

Antonelli A. (2017). Biogeography: drivers of bioregionalization. Nat. Ecol. Evol. 1, 0114. 10.1038/s41559-017-0114 [OpenAIRE] [DOI]

Barrett R. D. H.Schluter D. (2008). Adaptation from standing genetic variation. Trends Ecol. Evol. 23, 38–44. 10.1016/j.tree.2007.09.008 18006185 [OpenAIRE] [PubMed] [DOI]

Bates D.Maechler M.Bolker B.Walker S. (2015). Fitting linear mixed-effects models using lme4. J. Stat. Soft. 67, 1–48. 10.18637/jss.v067.i01 [OpenAIRE] [DOI]

Beaumont M. A.Nichols R. A. (1996). Evaluating loci for use in the genetic analysis of population structure. Proc. Roy. Soc. B-Biol. Sci. 263, 1619–1626. 10.1098/rspb.1996.0237 [OpenAIRE] [DOI]

Bennie J.Huntley B.Wiltshire A.Hill M. O.Baxter R. (2008). Slope, aspect and climate: spatially explicit and implicit models of topographic microclimate in chalk grassland. Ecol. Model. 216, 47–59. 10.1016/j.ecolmodel.2008.04.010 [OpenAIRE] [DOI]

Bonin A.Bellemain E.Bronken E. P.Pompanon F.Brochmann C.Taberlet P. (2004). How to track and assess genotyping errors in population genetics studies. Mol. Ecol. 13, 3261–3273. 10.1111/j.1365-294X.2004.02346.x 15487987 [OpenAIRE] [PubMed] [DOI]

Borcard D.Legendre P. (2002). All-scale spatial analysis of ecological data by means of principal coordinates of neighbor matrices. Ecol. Model. 153, 51–68. 10.1016/S0304-3800(01)00501-4 [OpenAIRE] [DOI]

Borcard D.Legendre P.Drapeau P. (1992). Partialling out the spatial component of ecological variation. Ecology 73, 1045–1055. 10.2307/1940179 [OpenAIRE] [DOI]

Bothwell H.Bisbing S.Therkildsen N. O.Crawford L.Alvarez N.Holderegger R. (2013). Identifying genetic signatures of selection in a non-model species, alpine gentian (Gentiana nivalis L.), using a landscape genetic approach. Conser. Genet. 14, 467–481. 10.1007/s10592-012-0411-5 [OpenAIRE] [DOI]

121 references, page 1 of 9
Powered by OpenAIRE Research Graph
Any information missing or wrong?Report an Issue