publication . Conference object . 2017

Re-architecting datacenter networks and stacks for low latency and high performance

Andrew W. Moore; Alexandru Agache; Andrei Voinescu; Gianni Antichi; Costin Raiciu; Marcin Wójcik; Mark Handley;
Open Access
  • Published: 07 Aug 2017
  • Publisher: SIGCOMM 2017 - Proceedings of the 2017 Conference of the ACM Special Interest Group on Data Communication
  • Country: United Kingdom
Abstract
© 2017 ACM. Modern datacenter networks provide very high capacity via redundant Clos topologies and low switch latency, but transport protocols rarely deliver matching performance. We present NDP, a novel datacenter transport architecture that achieves near-optimal completion times for short transfers and high flow throughput in a wide range of scenarios, including incast. NDP switch buffers are very shallow and when they fill the switches trim packets to headers and priority forward the headers. This gives receivers a full view of instantaneous demand from all senders, and is the basis for our novel, high-performance, multipath-aware transport protocol that can...
Subjects
ACM Computing Classification System: ComputerSystemsOrganization_COMPUTER-COMMUNICATIONNETWORKS
free text keywords: Datacenters; Network Stacks; Transport Protocols, Throughput, Computer network, business.industry, business, Network packet, Trim, Latency (engineering), Clos network, Computer science, NetFPGA, Network topology
Funded by
EC| SSICLOPS
Project
SSICLOPS
Scalable and Secure Infrastructures for Cloud Operations
  • Funder: European Commission (EC)
  • Project Code: 644866
  • Funding stream: H2020 | RIA
41 references, page 1 of 3

[1] M. Al-Fares, A. Loukissas, and A. Vahdat. A scalable, commodity data center network architecture. In Proc. ACM SIGCOMM, Aug. 2010. [OpenAIRE]

[2] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat. Hedera: Dynamic flow scheduling for data center networks. In Proc. Usenix NSDI, 2010.

[3] M. Alizadeh, T. Edsall, S. Dharmapurikar, R. Vaidyanathan, K. Chu, A. Fingerhut, V. T. Lam, F. Matus, R. Pan, N. Yadav, and G. Varghese. CONGA: Distributed Congestion-aware Load Balancing for Datacenters. In Proc. ACM SIGCOMM 2014, pages 503-514.

[4] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B. Prabhakar, S. Sengupta, , and M. Sridharan. Data center TCP (DCTCP). In Proc. ACM SIGCOMM, Aug. 2010.

[5] M. Alizadeh, A. Kabbani, T. Edsall, B. Prabhakar, A. Vahdat, and M. Yasuda. Less is more: trading a little bandwidth for ultra-low latency in the data center. In Proc. Usenix NSDI, pages 253-266, 2012.

[6] M. Alizadeh, S. Yang, M. Sharif, S. Katti, N. McKeown, B. Prabhakar, and S. Shenker. pFabric: Minimal near-optimal datacenter transport. In Proc. ACM SIGCOMM 2013.

[7] T. Benson, A. Akella, and D. A. Maltz. Network trafcfi characteristics of data centers in the wild. In Proceedings of the 10th ACM SIGCOMM conference on Internet measurement, pages 267-280. ACM, 2010. [OpenAIRE]

[8] R. Braden. RFC 1644: T/TCP - TCP extensions for transactions functional specification. Technical report, RFC Editor, July 1994.

[9] P. Cheng, F. Ren, R. Shu, and C. Lin. Catch the whole lot in an action: Rapid precise packet loss notification in data centers. In Proc. Usenix NSDI, 2014.

[10] Y. Cheng, J. Chu, S. Radhakrishnan, and A. Jain. RFC 7413: TCP fast open. Technical report, RFC Editor, Dec. 2014.

[11] J. Chu, N. Dukkipati, Y. Cheng, and M. Mathis. RFC 6928: Increasing TCP's initial window. Technical report, RFC Editor, Apr. 2013.

[12] A. Dixit, P. Prakash, Y. Hu, and R. Kompella. On the impact of packet spraying in data center networks. In Proc. IEEE INFOCOM 2013, 2013. [OpenAIRE]

[13] DPDK Data Plane Development Kit. http://dpdk.org. Accessed: 2017-01-27.

[14] S. Floyd and V. Jacobson. Traffic phase effects in packet-switched gateways. SIGCOMM Comput. Commun. Rev., 21(2):26-42, Apr. 1991.

[15] S. Floyd and J. Kempf. RFC 3714: IAB concerns regarding congestion control for voice traffic in the internet. Technical report, RFC Editor, Mar. 2004.

41 references, page 1 of 3
Abstract
© 2017 ACM. Modern datacenter networks provide very high capacity via redundant Clos topologies and low switch latency, but transport protocols rarely deliver matching performance. We present NDP, a novel datacenter transport architecture that achieves near-optimal completion times for short transfers and high flow throughput in a wide range of scenarios, including incast. NDP switch buffers are very shallow and when they fill the switches trim packets to headers and priority forward the headers. This gives receivers a full view of instantaneous demand from all senders, and is the basis for our novel, high-performance, multipath-aware transport protocol that can...
Subjects
ACM Computing Classification System: ComputerSystemsOrganization_COMPUTER-COMMUNICATIONNETWORKS
free text keywords: Datacenters; Network Stacks; Transport Protocols, Throughput, Computer network, business.industry, business, Network packet, Trim, Latency (engineering), Clos network, Computer science, NetFPGA, Network topology
Funded by
EC| SSICLOPS
Project
SSICLOPS
Scalable and Secure Infrastructures for Cloud Operations
  • Funder: European Commission (EC)
  • Project Code: 644866
  • Funding stream: H2020 | RIA
41 references, page 1 of 3

[1] M. Al-Fares, A. Loukissas, and A. Vahdat. A scalable, commodity data center network architecture. In Proc. ACM SIGCOMM, Aug. 2010. [OpenAIRE]

[2] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat. Hedera: Dynamic flow scheduling for data center networks. In Proc. Usenix NSDI, 2010.

[3] M. Alizadeh, T. Edsall, S. Dharmapurikar, R. Vaidyanathan, K. Chu, A. Fingerhut, V. T. Lam, F. Matus, R. Pan, N. Yadav, and G. Varghese. CONGA: Distributed Congestion-aware Load Balancing for Datacenters. In Proc. ACM SIGCOMM 2014, pages 503-514.

[4] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B. Prabhakar, S. Sengupta, , and M. Sridharan. Data center TCP (DCTCP). In Proc. ACM SIGCOMM, Aug. 2010.

[5] M. Alizadeh, A. Kabbani, T. Edsall, B. Prabhakar, A. Vahdat, and M. Yasuda. Less is more: trading a little bandwidth for ultra-low latency in the data center. In Proc. Usenix NSDI, pages 253-266, 2012.

[6] M. Alizadeh, S. Yang, M. Sharif, S. Katti, N. McKeown, B. Prabhakar, and S. Shenker. pFabric: Minimal near-optimal datacenter transport. In Proc. ACM SIGCOMM 2013.

[7] T. Benson, A. Akella, and D. A. Maltz. Network trafcfi characteristics of data centers in the wild. In Proceedings of the 10th ACM SIGCOMM conference on Internet measurement, pages 267-280. ACM, 2010. [OpenAIRE]

[8] R. Braden. RFC 1644: T/TCP - TCP extensions for transactions functional specification. Technical report, RFC Editor, July 1994.

[9] P. Cheng, F. Ren, R. Shu, and C. Lin. Catch the whole lot in an action: Rapid precise packet loss notification in data centers. In Proc. Usenix NSDI, 2014.

[10] Y. Cheng, J. Chu, S. Radhakrishnan, and A. Jain. RFC 7413: TCP fast open. Technical report, RFC Editor, Dec. 2014.

[11] J. Chu, N. Dukkipati, Y. Cheng, and M. Mathis. RFC 6928: Increasing TCP's initial window. Technical report, RFC Editor, Apr. 2013.

[12] A. Dixit, P. Prakash, Y. Hu, and R. Kompella. On the impact of packet spraying in data center networks. In Proc. IEEE INFOCOM 2013, 2013. [OpenAIRE]

[13] DPDK Data Plane Development Kit. http://dpdk.org. Accessed: 2017-01-27.

[14] S. Floyd and V. Jacobson. Traffic phase effects in packet-switched gateways. SIGCOMM Comput. Commun. Rev., 21(2):26-42, Apr. 1991.

[15] S. Floyd and J. Kempf. RFC 3714: IAB concerns regarding congestion control for voice traffic in the internet. Technical report, RFC Editor, Mar. 2004.

41 references, page 1 of 3
Any information missing or wrong?Report an Issue