publication . Article . Preprint . 1999

Growth-complexity spectrum of some discrete dynamical systems

Abarenkova, N.; Anglès d’Auriac, J.-Ch.; Boukraa, S.; Maillard, J.-M.;
Open Access
  • Published: 01 Jun 1999 Journal: Physica D: Nonlinear Phenomena, volume 130, pages 27-42 (issn: 0167-2789, Copyright policy)
  • Publisher: Elsevier BV
Abstract
Comment: 1 LaTex file
Subjects
free text keywords: Statistical and Nonlinear Physics, Condensed Matter Physics, Mathematical analysis, Algebraic number, Homogeneous polynomial, Discrete mathematics, Dynamical systems theory, Permutation, Expression (mathematics), Matrix (mathematics), Mathematics, Exponential function, [PHYS]Physics [physics], [MATH]Mathematics [math], Nonlinear Sciences - Chaotic Dynamics
23 references, page 1 of 2

[1] S. Boukraa, J-M. Maillard, and G. Rollet, Discrete Symmetry Groups of Vertex Models in Statistical Mechanics. J. Stat.Phys. 78 (1995), pp. 1195-1251.

[2] S. Boukraa and J-M. Maillard, Factorization properties of birational mappings. Physica A 220 (1995), pp. 403-470.

[3] M.P. Bellon, J-M. Maillard, and C-M. Viallet, Infinite Discrete Symmetry Group for the Yang-Baxter Equations: Spin models. Physics Letters A 157 (1991), pp. 343-353. [OpenAIRE]

[4] M.P. Bellon, J-M. Maillard, and C-M. Viallet, Infinite Discrete Symmetry Group for the Yang-Baxter Equations: Vertex Models. Phys.Lett. B 260 (1991), pp. 87-100. [OpenAIRE]

[5] E. Ott, Chaos in dynamical systems Cambridge University Press (1993).

[6] K.T. Alligood,T.D. Sauer and J.A. Yorke, Chaos An introduction to dynamical systems Springer-Verlag New York (1997).

[7] M. H´enon, A two dimensional mapping with a strange attractor Comm. Math. Phys. 50, 69 (1976).

[8] S. Boukraa, J-M. Maillard, and G. Rollet, Determinantal identities on integrable mappings. Int. J. Mod. Phys. B8 (1994), pp. 2157-2201.

[9] S. Boukraa, J-M. Maillard, and G. Rollet, Integrable mappings and polynomial growth. Physica A 208 (1994), pp. 115-175. [OpenAIRE]

[10] J. Hietarinta and C. Viallet, Singularity confinement and chaos in discrete systems. solv-int/9711014

[11] A.P. Veselov, Cremona group and dynamical systems. Mat. Zametki. 45, 118 (1989).

[12] J. Moser and A.P. Veselov, Discrete versions of some classical integrable systems and factorization of matrix polynomials. Comm. Math. Phys. 139, 217 (1991). [OpenAIRE]

[13] A.P. Veselov, Growth and Integrability in the Dynamics of Mappings. Comm. Math. Phys. 145, 181 (1992). [OpenAIRE]

[14] N. Abarenkova, J-C. Angl`es d'Auriac, S. Boukraa and J-M. Maillard. Elliptic curves from finite order recursions or noninvolutive permutations for discrete dynamical systems and lattice statistical mechanics. Eur. Phys. J. B

[15] S. Boukraa, J-M. Maillard, and G. Rollet, Almost integrable mappings. Int. J. Mod. Phys. B8 (1994), pp.137-174. [OpenAIRE]

23 references, page 1 of 2
Powered by OpenAIRE Research Graph
Any information missing or wrong?Report an Issue