publication . Article . Other literature type . 2019

Temporal and spatial variation in bacterial communities of “Jonagold” apple (Malus x domestica Borkh.) and “Conference” pear (Pyrus communis L.) floral nectar

Jolien Smessaert; Sam Crauwels; Maarten Van Geel; Olivier Honnay; Christel Verreth; Wannes Keulemans; Bart Lievens;
Open Access English
  • Published: 22 Aug 2019 Journal: MicrobiologyOpen (issn: 2045-8827, Copyright policy)
  • Publisher: Wiley
  • Country: Belgium
Abstract
Nectar bacterial community composition was dominated by only a few bacterial species and differed strongly among fruit species. The nectar of pear (b) was dominated by Actinobacteria, Proteobacteria, and Firmicutes, while apple nectar (a) was strongly enriched by Bacteroidetes. Bacterial richness and diversity were found to fluctuate during flowering.
Subjects
free text keywords: conference, Jonagold, metagenomic analysis, nectar bacteria, pollination, pome fruit, Microbiology, QR1-502, Original Article, Original Articles, Pollinator, Pome, Proteobacteria, biology.organism_classification, biology, Nectar, Pyrus communis, Horticulture, PEAR
Related Organizations
Download fromView all 5 versions
MicrobiologyOpen
Article . 2019
Lirias
Article . 2019
Provider: Lirias
MicrobiologyOpen
Article . 2019
Provider: Crossref
53 references, page 1 of 4

Acinas, S. G., Sarma‐Rupavtarm, R., Klepac‐Ceraj, V., & Polz, M. F. (2005). PCR‐induced sequence artifacts and bias: Insights from comparison of two 16S rRNA clone libraries constructed from the same sample. Applied and Environmental Microbiology, 71, 8966–8969. 10.1128/AEM.71.12.8966-8969.2005 16332901 [OpenAIRE] [PubMed] [DOI]

Aizenberg‐Gershtein, Y., Izhaki, I., & Halpern, M. (2013). Do honeybees shape the bacterial community composition in floral nectar? PLoS One, 8, e67556 10.1371/journal.pone.0067556 23844027 [OpenAIRE] [PubMed] [DOI]

Aizenberg‐Gershtein, Y., Izhaki, I., Santhanam, R., Kumar, P., Baldwin, I. T., & Halpern, M. (2015). Pyridine‐type alkaloid composition affects bacterial community composition of floral nectar. Scientific Reports, 5, 1–11. 10.1038/srep11536 [OpenAIRE] [DOI]

Álvarez‐Pérez, S., Herrera, C. M., & de Vega, C. (2012). Zooming‐in on floral nectar: A first exploration of nectar‐associated bacteria in wild plant communities. FEMS Microbiology Ecology, 80, 591–602. 10.1111/j.1574-6941.2012.01329.x 22324904 [OpenAIRE] [PubMed] [DOI]

Álvarez‐Pérez, S., Lievens, B., & Fukami, T. (2019). Yeast‐bacterium interactions: The next frontier in nectar research. Trends in Plant Science, 24, 393–401. 10.1016/j.tpl ants.2019.01.012 30792076 [OpenAIRE] [PubMed] [DOI]

Bonn, W. G., & van der Zwet, T. (2000). Distribution and economic importance of fire blight In Vanneste J. L. (Ed.), Fire blight: The disease and its causative agent, Erwinia amylovora, (pp. 37–53). New York, NY: CABI Publishing.

Callahan, B. J., McMurdie, P. J., & Holmes, S. P. (2017). Exact sequence variants should replace operational taxonomic units in marker‐gene data analysis. The ISME Journal, 11, 2639–2643. 10.1038/ismej.2017.119 28731476 [OpenAIRE] [PubMed] [DOI]

Canto, A., & Herrera, C. M. (2012). Micro‐organisms behind the pollination scenes: Microbial imprint on floral nectar sugar variation in a tropical plant community. Annals of Botany, 110, 1173–1183. 10.1093/aob/mcs183 22915578 [OpenAIRE] [PubMed] [DOI]

Caporaso, J. G., Lauber, C. L., Walters, W. A., Berg‐Lyons, D., Lozupone, C. A., Turnbaugh, P. J., … Knight, R. (2011). Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proceedings of the National Academy of Sciences, 108, 4516–4522. 10.1073/pnas.1000080107 [OpenAIRE] [DOI]

Edgar, R. C. (2013). UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nature Methods, 10, 996–998. 10.1038/nmeth.2604 23955772 [OpenAIRE] [PubMed] [DOI]

Edgar, R. C. (2016). UNOISE2: Improved error‐correction for Illumina 16S and ITS amplicon sequencing. BioRxiv, 081257, 10.1101/081257 [OpenAIRE] [DOI]

Engel, P., & Moran, N. A. (2013). The gut microbiota of insects ‐ diversity in structure and function. FEMS Microbiology Reviews, 37, 699–735. 10.1111/1574-6976.12025 23692388 [OpenAIRE] [PubMed] [DOI]

Fridman, S., Izhaki, I., Gerchman, Y., & Halpern, M. (2012). Bacterial communities in floral nectar. Environmental Microbiology Reports, 4, 97–104. 10.1111/j.1758-2229.2011.00309.x 23757235 [OpenAIRE] [PubMed] [DOI]

Fuhrman, J. A. (2009). Microbial community structure and its functional implications. Nature, 459, 193–199. 10.1038/nature08058 19444205 [OpenAIRE] [PubMed] [DOI]

Garratt, M. P. D., Breeze, T. D., Jenner, N., Polce, C., Biesmeijer, J. C., & Potts, S. G. (2014). Avoiding a bad apple: Insect pollination enhances fruit quality and economic value. Agriculture, Ecosystems and Environment, 184, 34–40. 10.1016/j.agee.2013.10.032 [OpenAIRE] [DOI]

53 references, page 1 of 4
Abstract
Nectar bacterial community composition was dominated by only a few bacterial species and differed strongly among fruit species. The nectar of pear (b) was dominated by Actinobacteria, Proteobacteria, and Firmicutes, while apple nectar (a) was strongly enriched by Bacteroidetes. Bacterial richness and diversity were found to fluctuate during flowering.
Subjects
free text keywords: conference, Jonagold, metagenomic analysis, nectar bacteria, pollination, pome fruit, Microbiology, QR1-502, Original Article, Original Articles, Pollinator, Pome, Proteobacteria, biology.organism_classification, biology, Nectar, Pyrus communis, Horticulture, PEAR
Related Organizations
Download fromView all 5 versions
MicrobiologyOpen
Article . 2019
Lirias
Article . 2019
Provider: Lirias
MicrobiologyOpen
Article . 2019
Provider: Crossref
53 references, page 1 of 4

Acinas, S. G., Sarma‐Rupavtarm, R., Klepac‐Ceraj, V., & Polz, M. F. (2005). PCR‐induced sequence artifacts and bias: Insights from comparison of two 16S rRNA clone libraries constructed from the same sample. Applied and Environmental Microbiology, 71, 8966–8969. 10.1128/AEM.71.12.8966-8969.2005 16332901 [OpenAIRE] [PubMed] [DOI]

Aizenberg‐Gershtein, Y., Izhaki, I., & Halpern, M. (2013). Do honeybees shape the bacterial community composition in floral nectar? PLoS One, 8, e67556 10.1371/journal.pone.0067556 23844027 [OpenAIRE] [PubMed] [DOI]

Aizenberg‐Gershtein, Y., Izhaki, I., Santhanam, R., Kumar, P., Baldwin, I. T., & Halpern, M. (2015). Pyridine‐type alkaloid composition affects bacterial community composition of floral nectar. Scientific Reports, 5, 1–11. 10.1038/srep11536 [OpenAIRE] [DOI]

Álvarez‐Pérez, S., Herrera, C. M., & de Vega, C. (2012). Zooming‐in on floral nectar: A first exploration of nectar‐associated bacteria in wild plant communities. FEMS Microbiology Ecology, 80, 591–602. 10.1111/j.1574-6941.2012.01329.x 22324904 [OpenAIRE] [PubMed] [DOI]

Álvarez‐Pérez, S., Lievens, B., & Fukami, T. (2019). Yeast‐bacterium interactions: The next frontier in nectar research. Trends in Plant Science, 24, 393–401. 10.1016/j.tpl ants.2019.01.012 30792076 [OpenAIRE] [PubMed] [DOI]

Bonn, W. G., & van der Zwet, T. (2000). Distribution and economic importance of fire blight In Vanneste J. L. (Ed.), Fire blight: The disease and its causative agent, Erwinia amylovora, (pp. 37–53). New York, NY: CABI Publishing.

Callahan, B. J., McMurdie, P. J., & Holmes, S. P. (2017). Exact sequence variants should replace operational taxonomic units in marker‐gene data analysis. The ISME Journal, 11, 2639–2643. 10.1038/ismej.2017.119 28731476 [OpenAIRE] [PubMed] [DOI]

Canto, A., & Herrera, C. M. (2012). Micro‐organisms behind the pollination scenes: Microbial imprint on floral nectar sugar variation in a tropical plant community. Annals of Botany, 110, 1173–1183. 10.1093/aob/mcs183 22915578 [OpenAIRE] [PubMed] [DOI]

Caporaso, J. G., Lauber, C. L., Walters, W. A., Berg‐Lyons, D., Lozupone, C. A., Turnbaugh, P. J., … Knight, R. (2011). Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proceedings of the National Academy of Sciences, 108, 4516–4522. 10.1073/pnas.1000080107 [OpenAIRE] [DOI]

Edgar, R. C. (2013). UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nature Methods, 10, 996–998. 10.1038/nmeth.2604 23955772 [OpenAIRE] [PubMed] [DOI]

Edgar, R. C. (2016). UNOISE2: Improved error‐correction for Illumina 16S and ITS amplicon sequencing. BioRxiv, 081257, 10.1101/081257 [OpenAIRE] [DOI]

Engel, P., & Moran, N. A. (2013). The gut microbiota of insects ‐ diversity in structure and function. FEMS Microbiology Reviews, 37, 699–735. 10.1111/1574-6976.12025 23692388 [OpenAIRE] [PubMed] [DOI]

Fridman, S., Izhaki, I., Gerchman, Y., & Halpern, M. (2012). Bacterial communities in floral nectar. Environmental Microbiology Reports, 4, 97–104. 10.1111/j.1758-2229.2011.00309.x 23757235 [OpenAIRE] [PubMed] [DOI]

Fuhrman, J. A. (2009). Microbial community structure and its functional implications. Nature, 459, 193–199. 10.1038/nature08058 19444205 [OpenAIRE] [PubMed] [DOI]

Garratt, M. P. D., Breeze, T. D., Jenner, N., Polce, C., Biesmeijer, J. C., & Potts, S. G. (2014). Avoiding a bad apple: Insect pollination enhances fruit quality and economic value. Agriculture, Ecosystems and Environment, 184, 34–40. 10.1016/j.agee.2013.10.032 [OpenAIRE] [DOI]

53 references, page 1 of 4
Any information missing or wrong?Report an Issue