publication . Article . Other literature type . 2015

Salt tolerance at single cell level in giant-celled Characeae.

Mary Jane eBeilby;
Open Access
  • Published: 28 Apr 2015 Journal: Frontiers in Plant Science, volume 6 (eissn: 1664-462X, Copyright policy)
  • Publisher: Frontiers Media SA
Abstract
Characean plants provide an excellent experimental system for electrophysiology and physiology due to: (i) very large cell size, (ii) position on phylogenetic tree near the origin of land plants and (iii) continuous spectrum from very salt sensitive to very salt tolerant species. A range of experimental techniques is described, some unique to characean plants. Application of these methods provided electrical characteristics of membrane transporters, which dominate the membrane conductance under different outside conditions. With this considerable background knowledge the electrophysiology of salt sensitive and salt tolerant genera can be compared under salt and/...
Subjects
free text keywords: Electrochemical gradient, Turgor pressure, Depolarization, Osmoregulation, Symporter, Botany, Membrane, Salinity, Osmotic shock, Biology, Plant Science, Characeae, salt tolerance, electrophysiology, current-voltage characteristics, action potentials, proton pump, H+/OH- channels, non-selective cation channels, Review, Plant culture, SB1-1110
Related Organizations
127 references, page 1 of 9

Al Khazaaly S.Beilby M. J. (2007). Modeling ion transporters at the time of hypertonic regulation Lamprothamnium succinctum (Characeae, Charophyceae). Charophytes 1 28–47.

Al Khazaaly S.Beilby M. J. (2012). Zinc ion blocks H+/OH- channels in Chara australis Plant Cell Environ. 35 1380–1392 10.1111/j.1365-3040.2012.02496.x [OpenAIRE] [DOI]

Al Khazaaly S.Walker N. A.Beilby M. J.Shepherd V. A. (2009). Membrane potential fluctuations in Chara australis: a characteristic signature of high external sodium. Eur. Biophys. J. 39 167–174 10.1007/s00249-009-0485-2 19499217 [OpenAIRE] [PubMed] [DOI]

Allakhverdiev S. I.Murata N. (2008). Salt stress inhibits photosystems II and I in cyanobacteria.Photosynth. Res. 98 529–539 10.1007/s11120-008-9334-x [OpenAIRE] [DOI]

Allakhverdiev S. I.Sakamoto A.Nishiyama Y.Inaba M.Murata N. (2000). Ionic and osmotic effects of NaCl-induced inactivation of photosystems I and II in Synechococcus sp. Plant Physiol. 123 1047–1056 10.1104/pp.123.3.1047 10889254 [OpenAIRE] [PubMed] [DOI]

Amtmann A.Sanders D. (1999). Mechanism of Na+ uptake by plant cells. Adv. Bot. Res. 29 75–112 10.1016/S0065-2296(08)60310-9 [DOI]

Aquino R. S.Grativol C.Mourão P. A. S. (2011). Rising from the sea: correlations between sulfated polysaccharides and salinity in plants. PLoS ONE 6:e18862 10.1371/journal.pone.0018862 [OpenAIRE] [DOI]

Beilby M. J. (1984). Current-voltage characteristics of the proton pump at Chara plasmalemma: I. pH dependence. J. Membr. Biol. 81 113–125 10.1007/BF01868976 [DOI]

Beilby M. J. (1985). Potassium channels at Chara plasmalemma. J. Exp. Bot. 36 228–239 10.1093/jxb/36.2.228 [OpenAIRE] [DOI]

Beilby M. J. (1986). Factors controlling the K+ conductance in Chara J. Membr. Biol. 93 187–193 10.1007/BF01870810 [DOI]

Beilby M. J. (1989). “Electrophysiology of giant algal cells,” in Methods in Enzymology Vol. 174 eds Fleischer S.Fleischer B. (San Diego, CA: Academic Press) 403–443.

Beilby M. J. (1990). Current-voltage curves for plant membrane studies: a critical analysis of the method. J. Exp. Bot. 41 165–182 10.1093/jxb/41.2.165 [OpenAIRE] [DOI]

Beilby M. J. (2007). “Action potential in charophytes,” in International Review of Cytology Vol. 257 ed. Jeon K. W. (San Diego, CA: Elsevier Inc.) 43–82. [OpenAIRE]

Beilby M. J.Al Khazaaly S. (2009). The role of H+/OH- channels in salt stress response of Chara australis J. Membr. Biol. 230 21–34 10.1007/s00232-009-9182-4 [OpenAIRE] [DOI]

Beilby M. J.Al Khazaaly S.Bisson M. A. (2014). Salinity-induced noise in membrane potential of Characeae Chara australis: effect of exogenous Melatonin. J. Membr. Biol. 248 93–102 10.1007/s00232-014-9746-9 25378124 [OpenAIRE] [PubMed] [DOI]

127 references, page 1 of 9
Abstract
Characean plants provide an excellent experimental system for electrophysiology and physiology due to: (i) very large cell size, (ii) position on phylogenetic tree near the origin of land plants and (iii) continuous spectrum from very salt sensitive to very salt tolerant species. A range of experimental techniques is described, some unique to characean plants. Application of these methods provided electrical characteristics of membrane transporters, which dominate the membrane conductance under different outside conditions. With this considerable background knowledge the electrophysiology of salt sensitive and salt tolerant genera can be compared under salt and/...
Subjects
free text keywords: Electrochemical gradient, Turgor pressure, Depolarization, Osmoregulation, Symporter, Botany, Membrane, Salinity, Osmotic shock, Biology, Plant Science, Characeae, salt tolerance, electrophysiology, current-voltage characteristics, action potentials, proton pump, H+/OH- channels, non-selective cation channels, Review, Plant culture, SB1-1110
Related Organizations
127 references, page 1 of 9

Al Khazaaly S.Beilby M. J. (2007). Modeling ion transporters at the time of hypertonic regulation Lamprothamnium succinctum (Characeae, Charophyceae). Charophytes 1 28–47.

Al Khazaaly S.Beilby M. J. (2012). Zinc ion blocks H+/OH- channels in Chara australis Plant Cell Environ. 35 1380–1392 10.1111/j.1365-3040.2012.02496.x [OpenAIRE] [DOI]

Al Khazaaly S.Walker N. A.Beilby M. J.Shepherd V. A. (2009). Membrane potential fluctuations in Chara australis: a characteristic signature of high external sodium. Eur. Biophys. J. 39 167–174 10.1007/s00249-009-0485-2 19499217 [OpenAIRE] [PubMed] [DOI]

Allakhverdiev S. I.Murata N. (2008). Salt stress inhibits photosystems II and I in cyanobacteria.Photosynth. Res. 98 529–539 10.1007/s11120-008-9334-x [OpenAIRE] [DOI]

Allakhverdiev S. I.Sakamoto A.Nishiyama Y.Inaba M.Murata N. (2000). Ionic and osmotic effects of NaCl-induced inactivation of photosystems I and II in Synechococcus sp. Plant Physiol. 123 1047–1056 10.1104/pp.123.3.1047 10889254 [OpenAIRE] [PubMed] [DOI]

Amtmann A.Sanders D. (1999). Mechanism of Na+ uptake by plant cells. Adv. Bot. Res. 29 75–112 10.1016/S0065-2296(08)60310-9 [DOI]

Aquino R. S.Grativol C.Mourão P. A. S. (2011). Rising from the sea: correlations between sulfated polysaccharides and salinity in plants. PLoS ONE 6:e18862 10.1371/journal.pone.0018862 [OpenAIRE] [DOI]

Beilby M. J. (1984). Current-voltage characteristics of the proton pump at Chara plasmalemma: I. pH dependence. J. Membr. Biol. 81 113–125 10.1007/BF01868976 [DOI]

Beilby M. J. (1985). Potassium channels at Chara plasmalemma. J. Exp. Bot. 36 228–239 10.1093/jxb/36.2.228 [OpenAIRE] [DOI]

Beilby M. J. (1986). Factors controlling the K+ conductance in Chara J. Membr. Biol. 93 187–193 10.1007/BF01870810 [DOI]

Beilby M. J. (1989). “Electrophysiology of giant algal cells,” in Methods in Enzymology Vol. 174 eds Fleischer S.Fleischer B. (San Diego, CA: Academic Press) 403–443.

Beilby M. J. (1990). Current-voltage curves for plant membrane studies: a critical analysis of the method. J. Exp. Bot. 41 165–182 10.1093/jxb/41.2.165 [OpenAIRE] [DOI]

Beilby M. J. (2007). “Action potential in charophytes,” in International Review of Cytology Vol. 257 ed. Jeon K. W. (San Diego, CA: Elsevier Inc.) 43–82. [OpenAIRE]

Beilby M. J.Al Khazaaly S. (2009). The role of H+/OH- channels in salt stress response of Chara australis J. Membr. Biol. 230 21–34 10.1007/s00232-009-9182-4 [OpenAIRE] [DOI]

Beilby M. J.Al Khazaaly S.Bisson M. A. (2014). Salinity-induced noise in membrane potential of Characeae Chara australis: effect of exogenous Melatonin. J. Membr. Biol. 248 93–102 10.1007/s00232-014-9746-9 25378124 [OpenAIRE] [PubMed] [DOI]

127 references, page 1 of 9
Powered by OpenAIRE Open Research Graph
Any information missing or wrong?Report an Issue
publication . Article . Other literature type . 2015

Salt tolerance at single cell level in giant-celled Characeae.

Mary Jane eBeilby;