publication . Article . Preprint . 1995

Muon transverse ionization cooling: Stochastic approach

Richard C. Fernow; Juan C. Gallardo;
Open Access
  • Published: 30 Mar 1995 Journal: Physical Review E, volume 52, pages 1,039-1,042 (issn: 1063-651X, eissn: 1095-3787, Copyright policy)
  • Publisher: American Physical Society (APS)
Abstract
Transverse ionization cooling of muons is modeled as a Brownian motion of the muon beam as it traverses a Li or Be rod. A Langevin like equation is written for the free particle case (no external transverse magnetic field) and for the case of a harmonically bound beam in the presence of a focusing magnetic field. We demonstrate that the well known muon cooling equations for short-absorbers can be extrapolated to the useful case of a long absorber rod with a focusing magnetic field present.
Subjects
arXiv: Physics::Accelerator Physics
free text keywords: Physics - Accelerator Physics, Magnetic field, Transverse plane, Computational physics, Physics, Fokker–Planck equation, Ionization, Beam (structure), Quantum electrodynamics, Muon, Ionization cooling, Beam emittance

[1] E. A. Perevedentsev and A. N. Skrinsky, Proc. 12th Int. Conf. on High Energy Accel., (1983) 485; A. N. Skrinsky and V. V. Parkhomchuk, Sov. J. Nucl. Phys.,12 (1981) 3.

[2] D. Neuffer, Part. Accel., 14 (1983) 75; D. Neuffer, Muon cooling and applications, CERN Report, CERN 94-03, p. 49; D. Neuffer and R. Palmer, A high-energy high-luminosity μ+μ− collider, Proc. 4th European Particle Accel. Conf., (1994); R. Palmer, D. Neuffer and J. C. Gallardo, A practical High-Energy High-Luminosity μ+μ− collider, Proc. of the Workshop on Advanced Accel. Concepts, Lake Geneva, WI, to be published; D. Neuffer, Nucl. Instr. and Meth., A350 (1994) 27. [OpenAIRE]

[3] R. Palmer, private communication.

[4] R.C. Fernow, J.C. Gallardo, R.B. Palmer, D.R. Winn and D.V. Neuffer, A possible ionization cooling experiment at the AGS, submitted to the Proc. of the Workshop on Physics Potential & Development of μ+μ− Colliders, Sausalito, CA (1995).

[5] Review of Particle Properties, Phys Rev. D 50 (1994) 1253.

[6] G.Lynch and O. Dahl, Nucl. Instr. and Meth. B58 (1991) 6.

[7] N. M. Blachman and E. D. Courant, Phy. Rev. 74 (1948) 140.

[8] J. R. Fontana, Laser Acceleration of Particles, AIP Proceedings 130 (1985) 357.

[9] Bryan W. Montague, Proceedings of the CAS-ECFA-INFN Workshop (1984), CERN Report 85-07 208.

[10] P. Chen, K. Oide , A. M. Sessler and S. S. Yu, Phys Rev. Lett. 64 (1990) 1231.

[11] C. L. Bohn and J. R. Delayen, Phys Rev. E50 (1994) 1516.

[12] B. Rossi, High-Energy Particles, Prentice-Hall, Inc, Englewood Cliffs, N.J. (1961), p. 69; B. Rossi and K. Greisen, Rev. Mod. Phys., 13 (1941) 240.

[13] S. Chandrasekhar, Rev. Mod. Phys., 15 (1943) 1.

[14] A. Papoulis, Probability, random variables and Stochastic Processes, McGraw-Hill Book Co., Inc, New York (1965), Chap. 9 and Chap. 15; R. Feynman and A. Hibbs, Quantum Mechanics and Path Integrals, McGraw-Hill Book Co., Inc, (1965), Chap. 12.

[15] R. C. Fernow and J. C. Gallardo, Validity of the differential equations for ionization cooling, submitted to the Proc. of the Workshop on Physics Potential & Development of μ+μ− Colliders, Sausalito, CA (1995).

Any information missing or wrong?Report an Issue