$\chi$aro$\nu$: a tool for neutrino flux generation from WIMPs
- Published: 29 Jul 2020
[1] Particle Data Group collaboration, Review of particle physics, Phys. Rev. D 98 (2018) 030001.
[2] I. Esteban, M. C. Gonzalez-Garcia, A. Hernandez-Cabezudo, M. Maltoni and T. Schwetz, Global analysis of three- avour neutrino oscillations: synergies and tensions in the determination of 23; CP , and the mass ordering, JHEP 01 (2019) 106 [1811.05487].
[3] J. N. Bahcall, S. Basu and M. Pinsonneault, How uncertain are solar neutrino predictions?, Phys. Lett. B 433 (1998) 1 [astro-ph/9805135]. [OpenAIRE]
[4] J. N. Bahcall, A. M. Serenelli and S. Basu, New solar opacities, abundances, helioseismology, and neutrino uxes, Astrophys. J. Lett. 621 (2005) L85 [astro-ph/0412440].
[5] R. Davis, A review of the Homestake solar neutrino experiment, Prog. Part. Nucl. Phys. 32 (1994) 13.
[6] J. N. Bahcall, Solving the mystery of the missing neutrinos, physics/0406040.
[7] A. J. Lowe, Neutrino Physics and The Solar Neutrino Problem, 0907.3658.
[8] J. N. Bahcall, M. Gonzalez-Garcia and C. Pena-Garay, Does the sun shine by pp or CNO fusion reactions?, Phys. Rev. Lett. 90 (2003) 131301 [astro-ph/0212331].
[9] J. N. Bahcall, P. Krastev and A. Smirnov, Is large mixing angle MSW the solution of the solar neutrino problems?, Phys. Rev. D 60 (1999) 093001 [hep-ph/9905220]. [OpenAIRE]
[10] F. Zwicky, On the Masses of Nebulae and of Clusters of Nebulae, Astrophysics J. 86 (1937) 271. [OpenAIRE]
[11] F. D. Kahn and L. Woltjer, Intergalactic Matter and the Galaxy, Astrophysics J. 130 (1959) 705.
[12] K. C. Freeman, On the Disks of Spiral and S0 Galaxies, 10.1086/146762 170 (1970) 811.
[13] D. H. Rogstad and G. S. Shostak, Gross properties of ve scd galaxies as determined from 21-centimeter observations, 10.1086/146762 176 (1972) 315.
[14] J. Read, The Local Dark Matter Density, J. Phys. G 41 (2014) 063101 [1404.1938].
[15] Planck collaboration, Planck 2018 results. VI. Cosmological parameters, 1807.06209.
Related research
[1] Particle Data Group collaboration, Review of particle physics, Phys. Rev. D 98 (2018) 030001.
[2] I. Esteban, M. C. Gonzalez-Garcia, A. Hernandez-Cabezudo, M. Maltoni and T. Schwetz, Global analysis of three- avour neutrino oscillations: synergies and tensions in the determination of 23; CP , and the mass ordering, JHEP 01 (2019) 106 [1811.05487].
[3] J. N. Bahcall, S. Basu and M. Pinsonneault, How uncertain are solar neutrino predictions?, Phys. Lett. B 433 (1998) 1 [astro-ph/9805135]. [OpenAIRE]
[4] J. N. Bahcall, A. M. Serenelli and S. Basu, New solar opacities, abundances, helioseismology, and neutrino uxes, Astrophys. J. Lett. 621 (2005) L85 [astro-ph/0412440].
[5] R. Davis, A review of the Homestake solar neutrino experiment, Prog. Part. Nucl. Phys. 32 (1994) 13.
[6] J. N. Bahcall, Solving the mystery of the missing neutrinos, physics/0406040.
[7] A. J. Lowe, Neutrino Physics and The Solar Neutrino Problem, 0907.3658.
[8] J. N. Bahcall, M. Gonzalez-Garcia and C. Pena-Garay, Does the sun shine by pp or CNO fusion reactions?, Phys. Rev. Lett. 90 (2003) 131301 [astro-ph/0212331].
[9] J. N. Bahcall, P. Krastev and A. Smirnov, Is large mixing angle MSW the solution of the solar neutrino problems?, Phys. Rev. D 60 (1999) 093001 [hep-ph/9905220]. [OpenAIRE]
[10] F. Zwicky, On the Masses of Nebulae and of Clusters of Nebulae, Astrophysics J. 86 (1937) 271. [OpenAIRE]
[11] F. D. Kahn and L. Woltjer, Intergalactic Matter and the Galaxy, Astrophysics J. 130 (1959) 705.
[12] K. C. Freeman, On the Disks of Spiral and S0 Galaxies, 10.1086/146762 170 (1970) 811.
[13] D. H. Rogstad and G. S. Shostak, Gross properties of ve scd galaxies as determined from 21-centimeter observations, 10.1086/146762 176 (1972) 315.
[14] J. Read, The Local Dark Matter Density, J. Phys. G 41 (2014) 063101 [1404.1938].
[15] Planck collaboration, Planck 2018 results. VI. Cosmological parameters, 1807.06209.