publication . Article . Preprint . 2005

A matrix big bang

Savdeep Sethi; Ben Craps;
Open Access
  • Published: 01 Jan 2005
  • Country: Netherlands
Abstract
The light-like linear dilaton background represents a particularly simple time-dependent 1/2 BPS solution of critical type IIA superstring theory in ten dimensions. Its lift to M-theory, as well as its Einstein frame metric, are singular in the sense that the geometry is geodesically incomplete and the Riemann tensor diverges along a light-like subspace of codimension one. We study this background as a model for a big bang type singularity in string theory/M-theory. We construct the dual Matrix theory description in terms of a (1+1)-d supersymmetric Yang-Mills theory on a time-dependent world-sheet given by the Milne orbifold of (1+1)-d Minkowski space. Our mode...
Subjects
arXiv: High Energy Physics::Theory
free text keywords: High Energy Physics - Theory, Astrophysics, Nuclear and High Energy Physics
Related Organizations
Funded by
NSF| CAREER: Exploring the Structure of M Theory
Project
  • Funder: National Science Foundation (NSF)
  • Project Code: 0094328
  • Funding stream: Directorate for Mathematical & Physical Sciences | Division of Physics
27 references, page 1 of 2

[1] M. Gasperini and G. Veneziano, “The pre-big bang scenario in string cosmology,” Phys. Rept. 373 (2003) 1-212, hep-th/0207130; J. Khoury, B. A. Ovrut, P. J. Steinhardt, and N. Turok, “The ekpyrotic universe: Colliding branes and the origin of the hot big bang,” Phys. Rev. D64 (2001) 123522, hep-th/0103239; J. Khoury, B. A. Ovrut, N. Seiberg, P. J. Steinhardt, and N. Turok, “From big crunch to big bang,” Phys. Rev. D65 (2002) 086007, hep-th/0108187; P. J. Steinhardt and N. Turok, “Cosmic evolution in a cyclic universe,” Phys. Rev. D65 (2002) 126003, hep-th/0111098.

[2] H. Liu, G. W. Moore, and N. Seiberg, “Strings in a time-dependent orbifold,” JHEP 06 (2002) 045, hep-th/0204168.

[3] H. Liu, G. W. Moore, and N. Seiberg, “Strings in time-dependent orbifolds,” JHEP 10 (2002) 031, hep-th/0206182.

[4] A. Lawrence, “On the instability of 3D null singularities,” JHEP 11 (2002) 019, hep-th/0205288.

[5] G. T. Horowitz and J. Polchinski, “Instability of spacelike and null orbifold singularities,” Phys. Rev. D66 (2002) 103512, hep-th/0206228.

[6] M. Berkooz, B. Craps, D. Kutasov, and G. Rajesh, “Comments on cosmological singularities in string theory,” JHEP 03 (2003) 031, hep-th/0212215.

[7] G. T. Horowitz and A. R. Steif, “Space-time Singularities in String Theory,” Phys. Rev. Lett. 64 (1990) 260; V. Balasubramanian, S. F. Hassan, E. Keski-Vakkuri, and A. Naqvi, “A space-time orbifold: A toy model for a cosmological singularity,” Phys. Rev. D67 (2003) 026003, hep-th/0202187; L. Cornalba and M. S. Costa, “A new cosmological scenario in string theory,” Phys. Rev. D66 (2002) 066001, hep-th/0203031; J. Simon, “The geometry of null rotation identifications,” JHEP 06 (2002) 001, hep-th/0203201; A. J. Tolley and N. Turok, “Quantum fields in a big crunch / big bang spacetime,” Phys. Rev. D66 (2002) 106005, hep-th/0204091; L. Cornalba, M. S. Costa, and C. Kounnas, “A resolution of the cosmological singularity with orientifolds,” Nucl. Phys. B637 (2002) 378-394, hep-th/0204261; B. Craps, D. Kutasov, and G. Rajesh, “String propagation in the presence of cosmological singularities,” JHEP 06 (2002) 053, hep-th/0205101; E. J. Martinec and W. McElgin, “Exciting AdS orbifolds,” JHEP 10 (2002) 050, hep-th/0206175; M. Fabinger and J. McGreevy, “On smooth time-dependent orbifolds and null singularities,” JHEP 06 (2003) 042, hep-th/0206196; K. Okuyama, “D-branes on the null-brane,” JHEP 02 (2003) 043, hep-th/0211218; M. Fabinger and S. Hellerman, “Stringy resolutions of null singularities,” hep-th/0212223; P. Kraus, H. Ooguri, and S. Shenker, “Inside the horizon with AdS/CFT,” Phys. Rev. D67 [OpenAIRE]

[8] N. A. Nekrasov, “Milne universe, tachyons, and quantum group,” Surveys High Energ. Phys. 17 (2002) 115-124, hep-th/0203112.

[9] S. Elitzur, A. Giveon, D. Kutasov, and E. Rabinovici, “From big bang to big crunch and beyond,” JHEP 06 (2002) 017, hep-th/0204189. [OpenAIRE]

[10] M. Berkooz, B. Pioline, and M. Rozali, “Closed strings in Misner space: Cosmological production of winding strings,” JCAP 0408 (2004) 004, hep-th/0405126. [OpenAIRE]

[11] J. McGreevy and E. Silverstein, “The Tachyon at the End of the Universe,” hep-th/0506130.

[12] T. Banks, W. Fischler, S. H. Shenker, and L. Susskind, “M theory as a matrix model: A conjecture,” Phys. Rev. D55 (1997) 5112-5128, hep-th/9610043. [OpenAIRE]

[13] D. Bigatti and L. Susskind, “Review of matrix theory,” hep-th/9712072; T. Banks, “TASI lectures on matrix theory,” hep-th/9911068; W. Taylor, “M(atrix) theory: Matrix quantum mechanics as a fundamental theory,” Rev. Mod. Phys. 73 (2001) 419-462, hep-th/0101126.

[14] A. Hashimoto and S. Sethi, “Holography and string dynamics in time-dependent backgrounds,” Phys. Rev. Lett. 89 (2002) 261601, hep-th/0208126; J. Simon, “Null orbifolds in AdS, time dependence and holography,” JHEP 10 (2002) 036, hep-th/0208165; M. Alishahiha and S. Parvizi, “Branes in time-dependent backgrounds and AdS/CFT correspondence,” JHEP 10 (2002) 047, hep-th/0208187; R.-G. Cai, J.-X. Lu and N. Ohta, “NCOS and D-Branes in Time-Dependent Backgrounds”, Phys. Lett. B551 (2003) 178, hep-th/0210206; B. L. Cerchiai, “The Seiberg-Witten map for a time-dependent background,” JHEP 06 (2003) 056, hep-th/0304030; D. Robbins and S. Sethi, “The UV/IR interplay in theories with space-time varying non-commutativity,” JHEP 07 (2003) 034, hep-th/0306193; T. Hertog and G. T. Horowitz, “Towards a big crunch dual,” JHEP 07 (2004) 073, hep-th/0406134; T. Hertog and G. T. Horowitz, “Holographic description of AdS cosmologies,” JHEP 04 (2005) 005, hep-th/0503071; V. E. Hubeny, M. Rangamani, and S. F. Ross, “Causal structures and holography,” hep-th/0504034.

[15] E. Alvarez and P. Meessen, “Newtonian M(atrix) cosmology,” Phys. Lett. B426 (1998) 282, hep-th/9712136; D. Z. Freedman, G. W. Gibbons and M. Schnabl, “Matrix cosmology,” AIP Conf. Proc. 743 (2005) 286, hep-th/0411119.

27 references, page 1 of 2
Powered by OpenAIRE Research Graph
Any information missing or wrong?Report an Issue