publication . Article . Preprint . Other literature type . 2018

Majorana zero modes in superconductor–semiconductor heterostructures

Roman M. Lutchyn; Erik P. A. M. Bakkers; Leo P. Kouwenhoven; Peter Krogstrup; Charles Marcus; Yuval Oreg;
Open Access English
  • Published: 01 May 2018 Journal: Nature Reviews Materials, volume 3, issue 5, pages 52-68 (eissn: 2058-8437, Copyright policy)
  • Country: Netherlands
Abstract
Realizing topological superconductivity and Majorana zero modes in the laboratory is one of the major goals in condensed matter physics. We review the current status of this rapidly-developing field, focusing on semiconductor-superconductor proposals for topological superconductivity. Material science progress and robust signatures of Majorana zero modes in recent experiments are discussed. After a brief introduction to the subject, we outline several next-generation experiments probing exotic properties of Majorana zero modes, including fusion rules and non-Abelian exchange statistics. Finally, we discuss prospects for implementing Majorana-based topological qu...
Persistent Identifiers
Subjects
free text keywords: Electronic, Optical and Magnetic Materials, Biomaterials, Energy (miscellaneous), Surfaces, Coatings and Films, Materials Chemistry, Condensed Matter - Superconductivity, Condensed Matter - Mesoscale and Nanoscale Physics, Condensed Matter - Materials Science, Electronic, Optical and Magnetic Materials, Surfaces, Coatings and Films, Coulomb blockade, Superconductivity, Fusion rules, Quantum tunnelling, Physics, Theoretical physics, Nanowire, Semiconductor, business.industry, business, Heterojunction, MAJORANA
Funded by
EC| HEMs-DAM
Project
HEMs-DAM
Hybrid Epitaxial Materials for Novel Quantum State Detection and Manipulation
  • Funder: European Commission (EC)
  • Project Code: 716655
  • Funding stream: H2020 | ERC | ERC-STG
Validated by funder
,
EC| MUNATOP
Project
MUNATOP
Multi-Dimensional Study of non Abelian Topological States of Matter
  • Funder: European Commission (EC)
  • Project Code: 340210
  • Funding stream: FP7 | SP2 | ERC
153 references, page 1 of 11

[1] F. Wilczek, Nature Phys. 5, 614 (2009).

[2] A. Stern, Nature (London) 464, 187 (2010).

[3] P. W. Brouwer, Science 336, 989 (2012).

[4] P. A. Lee, Science 346, 545 (2014).

[5] A. Y. Kitaev, Annals of Physics 303, 2 (2003).

[6] C. Nayak, S. H. Simon, A. Stern, M. Freedman, and S. Das Sarma, Reviews of Modern Physics 80, 1083 (2008), arXiv:0707.1889.

[7] G. Moore and N. Read, Nucl. Phys. B 360, 362 (1991).

[8] N. Read and D. Green, Phys. Rev. B 61, 10267 (2000).

[9] D. A. Ivanov, Phys. Rev. Lett. 86, 268 (2001).

[10] A. Y. Kitaev, Physics Uspekhi 44, 131 (2001), arXiv:cond-mat/0010440.

[11] X.-L. Qi and S.-C. Zhang, Rev. Mod. Phys. 83, 1057 (2011).

[12] C. W. J. Beenakker, Annu. Rev. Condens. Matter Phys. 4, 113 (2013), arXiv:1112.1950.

[13] J. Alicea, Reports on Progress in Physics 75, 076501 (2012), arXiv:1202.1293.

[14] M. Leijnse and K. Flensberg, Semiconductor Science Technology 27, 124003 (2012), arXiv:1206.1736.

[15] T. D. Stanescu and S. Tewari, Journal of Physics Condensed Matter 25, 233201 (2013), arXiv:1302.5433.

153 references, page 1 of 11
Any information missing or wrong?Report an Issue