publication . Article . Other literature type . Preprint . 2011

Entanglement entropy of black holes

Sergey N. Solodukhin;
Open Access English
  • Published: 21 Oct 2011
  • Publisher: HAL CCSD
Abstract
The entanglement entropy is a fundamental quantity which characterizes the correlations between sub-systems in a larger quantum-mechanical system. For two sub-systems separated by a surface the entanglement entropy is proportional to the area of the surface and depends on the UV cutoff which regulates the short-distance correlations. The geometrical nature of the entanglement entropy calculation is particularly intriguing when applied to black holes when the entangling surface is the black hole horizon. I review a variety of aspects of this calculation: the useful mathematical tools such as the geometry of spaces with conical singularities and the heat kernel me...
Subjects
arXiv: Quantum Physics
free text keywords: [PHYS]Physics [physics], Physics and Astronomy (miscellaneous), Bekenstein-Hawking entropy, black holes, entanglement entropy, Atomic physics. Constitution and properties of matter, QC170-197, High Energy Physics - Theory, Condensed Matter - Statistical Mechanics, General Relativity and Quantum Cosmology, Review Article, Theoretical physics, Configuration entropy, Physics, Squashed entanglement, Generalized relative entropy, Joint quantum entropy, Quantum relative entropy, Topological entropy in physics, Quantum entanglement, Quantum discord, Classical mechanics
208 references, page 1 of 14

[1] Aharony, Ofer, Gubser, Steven S., Maldacena, Juan Martin, Ooguri, Hirosi, and Oz, Yaron, “Large N field theories, string theory and gravity”, Phys.Rept., 323, 183-386, (2000). [DOI], [arXiv:hep-th/9905111 [hep-th]].

[2] Allen, Bruce, “Does statistical mechanics equal one loop field theory?”, Phys. Rev., D33, 3640, (1986). [DOI].

[3] Allen, Bruce, and Ottewill, Adrian C., “Effects of curvature couplings for quantum fields on cosmic string space-times”, Phys.Rev., D42, 2669-2677, (1990). [DOI].

[4] Azeyanagi, Tatsuo, Nishioka, Tatsuma, and Takayanagi, Tadashi, “Near Extremal Black Hole Entropy as Entanglement Entropy via AdS2/CFT1”, Phys. Rev., D77, 064005, (2008). [DOI], [arXiv:0710.2956 [hep-th]].

[5] Banados, Maximo, Henneaux, Marc, Teitelboim, Claudio, and Zanelli, Jorge, “Geometry of the (2+1) black hole”, Phys.Rev., D48, 1506-1525, (1993). [DOI], [arXiv:gr-qc/9302012 [gr-qc]].

[6] Banados, Maximo, Teitelboim, Claudio, and Zanelli, Jorge, “The Black hole in threedimensional space-time”, Phys.Rev.Lett., 69, 1849-1851, (1992). [DOI], [arXiv:hep-th/9204099 [hep-th]]. [OpenAIRE]

[7] Banados, Maximo, Teitelboim, Claudio, and Zanelli, Jorge, “Black hole entropy and the dimensional continuation of the Gauss-Bonnet theorem”, Phys.Rev.Lett., 72, 957-960, (1994). [DOI], [arXiv:gr-qc/9309026 [gr-qc]]. [OpenAIRE]

[8] Banerjee, Shamik, Gupta, Rajesh Kumar, and Sen, Ashoke, “Logarithmic Corrections to Extremal Black Hole Entropy from Quantum Entropy Function”, (2010). [arXiv:1005.3044 [hep-th]]. [OpenAIRE]

[9] Barbon, J. L. F., “Horizon divergences of fields and strings in black hole backgrounds”, Phys. Rev., D50, 2712-2718, (1994). [DOI], [arXiv:hep-th/9402004]. [OpenAIRE]

[10] Barbon, J. L. F., “Remarks on thermal strings outside black holes”, Phys. Lett., B339, 41-48, (1994). [DOI], [arXiv:hep-th/9406209]. [OpenAIRE]

[11] Barbon, J. L. F., and Emparan, R., “On quantum black hole entropy and Newton constant renormalization”, Phys. Rev., D52, 4527-4539, (1995). [DOI], [arXiv:hep-th/9502155]. [OpenAIRE]

[12] Barbon, J.L.F., “Holographic avatars of entanglement entropy”, Nucl.Phys.Proc.Suppl., 192- 193, 12-26, (2009). [DOI].

[13] Barbon, Jose L.F., and Fuertes, Carlos A., “A Note on the extensivity of the holographic entanglement entropy”, JHEP, 0805, 053, (2008). [DOI], [arXiv:0801.2153 [hep-th]].

[14] Barbon, Jose L.F., and Fuertes, Carlos A., “Holographic entanglement entropy probes (non)locality”, JHEP, 0804, 096, (2008). [DOI], [arXiv:0803.1928 [hep-th]]. [OpenAIRE]

[15] Barvinsky, A. D., and Solodukhin, S. N., “Non-minimal coupling, boundary terms and renormalization of the Einstein-Hilbert action and black hole entropy”, Nucl. Phys., B479, 305- 318, (1996). [DOI], [arXiv:gr-qc/9512047]. [OpenAIRE]

208 references, page 1 of 14
Any information missing or wrong?Report an Issue